Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of Virtual Hood Slam Test

2016-04-05
2016-01-1365
The overall automotive industry is moving toward first time right test which in turn needs first time right analysis. This is due to the enormous pressure of cost, mass, time to market and availability of prototype vehicles for testing. Use of finite element methods enables to upfront predict the system behavior in operating conditions and evaluation of structural strength. In vehicle product development process, hood slam durability evaluation is one of the important tests for body closure structure. Current work showcases an effort made for developing virtual hood slam test. The virtual model consists of BIW, hood, hinge joint, interface like CRFM (cooling-radiator-fan module) and latch mechanism with spring preload. Analysis performed with LSDyna solver. An impact loading is applied by converting potential energy to kinetic energy, mimicking the hood dropping from a specified height on the hood latch.
Technical Paper

Closure Slam CAE Method Investigation for Automobiles

2016-04-05
2016-01-1349
In the current scenario, the major thrust is to simulate the customer usage pattern and lab test using virtual simulation methods. Going ahead, prime importance will be to reduce the number of soft tool prototype for all tests which can be predicted in CAE. Automotive door slam test is significantly complex in terms of prediction through simulation. Current work focuses on simulating the slam event and deriving load histories at different mounting locations through dynamic analysis using LSDyna. These extracted load histories are applied to trimmed door Nastran model and modal transient analysis is performed to find the transient stress history. This approach has a significant advantage of less computation time and stress-convergence with Nastran for performing multiple design iterations compared to LSDyna. Good failure correlation is achieved with the test using this approach. Using these load histories, design improvements are evaluated and robustness of the approach is validated.
X