Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Evaluating a Vehicle Climate Control System with a Passive Sensor Manikin coupled with a Thermal Comfort Model

2018-04-03
2018-01-0065
In a previous study, a passive sensor (HVAC) manikin coupled with a human thermal model was used to predict the thermal comfort of human test participants. The manikin was positioned among the test participants while they were collectively exposed to a mild transient heat up within a thermally asymmetric chamber. Ambient conditions were measured using the HVAC manikin’s distributed sensor system, which measures air velocity, air temperature, radiant heat flux, and relative humidity. These measurements were supplied as input to a human thermal model to predict thermophysiological response and subsequently thermal sensation and comfort. The model predictions were shown to accurately reproduce the group trends and the “time to comfort” at which a transition occurred from a state of thermal discomfort to comfort. In the current study, the effectiveness of using a coupled HVAC manikin-model system to evaluate a vehicle climate control system was investigated.
Technical Paper

A Comparison of Physiology-Based Metrics to Environment-Based Metrics for Evaluating Thermal Comfort

2013-04-08
2013-01-0844
Accurate assessment of thermal comfort requires comprehensive analysis of the environmental effects contributing to the heat transfer to and from the human body. A common comfort evaluation approach (e.g. PMV/PPD, Equivalent Temperature) is to find a direct correlation of comfort to environmental conditions (e.g. air temperature, relative humidity, clothing), thus implicitly accounting for the relationship between physiological response and thermal comfort. An alternate approach (e.g. Berkeley Comfort Model, Fiala's DTS) is to explicitly correlate comfort to basic physiological response (e.g. skin and core temperature), thereby separating the thermal analysis portion of the problem from the more subjective comfort analysis portion. While it has been shown that comparable results can be obtained between environment-based comfort metrics and physiology-based comfort metrics, the latter should be employed for optimal prediction accuracy.
Journal Article

Coupling a Passive Sensor Manikin with a Human Thermal Comfort Model to Predict Human Perception in Transient and Asymmetric Environments

2017-03-28
2017-01-0178
Passive sensor (HVAC) manikins have been developed to obtain high-resolution measurements of environmental conditions across a representative human body form. These manikins incorporate numerous sensors that measure air velocity, air temperature, radiant heat flux, and relative humidity. The effect of a vehicle’s climate control system on occupant comfort can be characterized from the data collected by an HVAC manikin. Equivalent homogeneous temperature (EHT) is often used as a first step in a cabin comfort analysis, particularly since it reduces a large data set to a single intuitive number. However, the applicability of the EHT for thermal comfort assessment is limited since it does not account for human homeostasis, i.e., that the human body actively counter-balances heat flow with the environment to maintain a constant core temperature. For this reason, a thermo-physiological human model is required to accurately simulate the body’s dynamic response to a changing environment.
X