Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Analysis of Combustion Noise in a Small Common-Rail Direct-Injection Diesel Engine at Different Engine Operating Conditions

2020-04-14
2020-01-0419
Stringent emission regulations on one hand and increasing demand for better fuel economy along with lower noise levels on the other hand require adoption of advanced common-rail direct-injection technologies in diesel engines. In the present work, a small 0.9-l, naturally aspirated, two-cylinder, common-rail direct-injection diesel engine is used for the analysis of combustion noise at different engine operating conditions. Experiments are conducted at different loads and engine speeds, incorporating both single and multiple (i.e. pilot and main) injections along with different injection timings. In the case of multiple injections, the influence of pilot injection quantity is also evaluated on the combustion noise while maintaining the same load. In-cylinder pressure was recorded with the resolution of 0.1 crank angle degree, and it was used for the quantitative analysis of noise assessed from the resulting cylinder pressure spectra, and sound pressure level.
Technical Paper

Parametric Investigation for NOx and Soot Emissions in Multiple-injection CRDI Engine using Phenomenological Model

2011-08-30
2011-01-1810
The classical trade-off between NOx and soot emissions from conventional diesel engines has been a limiting factor in meeting ever stringent emission norms. The electronic control of fuel injection in diesel engines emerged as an important strategy for their simultaneous reduction. The high pressure multiple-injection in a common rail direct injection system has been promising in this regard. While, the effects of pilot injection or multiple pulses of CRDI injection schedule on simultaneous reduction of NOx and soot have been widely investigated and reported, the investigations concerning three and more injection pulses have been limited. In this paper, the ability of a predictive model, developed by the authors, in providing optimal multiple-injection schedule is demonstrated through parametric investigations. The effects of pilot and post fuel quantity and dwell between the injection pulses on NOx and soot emissions are discussed.
Technical Paper

Reducing NO in a Biodiesel Fueled Compression Ignition Engine - An Experimental Study

2015-09-06
2015-24-2483
The replacement of fossil diesel with neat biodiesel in a compression ignition engine has advantage in lowering unburned hydrocarbon, carbon monoxide and smoke emissions. However, the injection advance experienced with biodiesel fuel with respect to diesel injection setting increases oxides of nitrogen emission. In this study, the biodiesel-NO control is attempted using charge and fuel modification strategies with retarded injection timing. The experiments are performed at maximum torque speed and higher loads viz. from 60% up to full load conditions maintaining same power between diesel and biodiesel while retarding the timing of injection by 3 deg. crank angle. The charge and fuel modifications are done by recycling 5% by volume of exhaust gas to the fresh charge and 10% by volume of methanol to Karanja biodiesel.
Technical Paper

Controlling Nitric Oxide in C I Engine - Bio-Mix Approach

2014-10-13
2014-01-2724
Biodiesel is an emerging alternative to fossil diesel for use in compression ignition engines. From environmental standpoint, an increase in nitric oxide (NO) emission from biodiesel fueled engine has been a major concern. Several investigations suggest the role of unsaturated methyl ester as a contributor to biodiesel-NO penalty. The chemical simplicity of biodiesel compared to fossil diesel makes their composition effects amenable to a systematic analysis. In this study, the effects of saturated palm and unsaturated karanja (Pongamia pinnata) biodiesels and their blends (Bio-mix) on compression ignition engine performance, combustion and NO emission are investigated. The combustion and emission characteristics of these fuels are compared with fossil diesel that the neat biodiesel fuels result in improved exhaust emissions except NO with a penalty in fuel economy.
X