Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Assessment of a Numerical Model for Multi-Hole Gasoline Sprays to be Employed in the Simulation of Spark Ignition GDI Engines with a Jet-Guided Combustion Mode

2009-06-15
2009-01-1915
Results of an experimental campaign conducted on a multi-hole gasoline injector are used to assess a numerical model for the spray dynamics suitable to be employed for the prediction of a GDI engine pressure cycle. The considered injector generates a spray with a hollow-ellipsoid footprint structure on a plane perpendicular to the spray axis. Spray penetration lengths and cone angles are measured at different injection pressures and total injected masses in an optically accessible vessel containing nitrogen at controlled conditions of temperature and pressure. Injected mass flow rate is measured on a Bosch tube. The numerical simulation is performed within the AVL Fire™ code environment. As a first step, the gasoline is considered as entering a constant volume environment containing nitrogen, in order to reproduce the effected experiments. Measured injection flow rates and cone angles are used as input variables for the model.
Technical Paper

Effects of Turbulence Modulation Addition in OpenFOAM® Toolkit on High Pressure Fuel Sprays

2011-04-12
2011-01-0820
The OpenFOAM® CFD methodology is nowadays employed for simulation in internal combustion engines and a lot of work has been done for an appropriate description of all complex phenomena. At the moment in the RANS turbulence models available in the OpenFOAM® toolbox the turbulence modulation is not yet included, and the present work analyzes the predictive capabilities of the code in simulating high injection pressure fuel sprays after modeling the influence of the dispersed phase on the turbulence structure. Different experiments were employed for the validation. At first, non-evaporating diesel spray was considered in a constant volume and quiescent vessel. The validation was performed via the available experimental spray evolution in terms of penetrations and spatial/temporal fuel distributions. Then the Sandia combustion chamber was chosen for diesel spray simulation in non-reacting conditions.
X