Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Evaluation of a Gasoline Particulate Filter to Reduce Particle Emissions from a Gasoline Direct Injection Vehicle

2012-09-10
2012-01-1727
Gaseous compounds, particle number and size distribution measurements on a gasoline direct injection (GDI) vehicle and a port fuel injection (PFI) vehicle were conducted over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) on Tier 2 certification gasoline (E0) and a 10% by volume ethanol (E10). Overall the GDI test vehicle was observed to have lower fuel consumption than the PFI test vehicle by 6% and 3% for the FTP-75 and US06 drive cycles, respectively. When using E10, this GDI vehicle had a better fuel consumption than the PFI vehicle by 7% and 5% for the FTP-75 and US06 drive cycles, respectively. For particle emissions, the solid particle number emission rates for the GDI, equipped with a 3-way catalyst in its original equipment manufacturer configuration (i.e., stock GDI), were 10 and 31 times higher than the PFI vehicle for the FTP-75 and US06 drive cycles, respectively.
Technical Paper

Gaseous and Particle Emissions from a Turbo-Jet Engine Operating on Alternative Fuels at Simulated Altitudes

2011-10-18
2011-01-2597
Gaseous and particle emission assessments on a 1.15 kN-thrust turbojet engine were conducted at five altitudes in an altitude chamber with Jet A-1 fuel, pure Fischer Tropsch (FT), and two mixed fuels of JP-8 with FT or Camelina-based hydro-processed jet fuels. In general, lower emissions in CO₂, NOx, and particle number as well as higher emissions in CO and THC were observed at higher altitudes compared to lower altitudes. These observations, which were similar for all test fuels, were attributed to the reduced combustion efficiency and temperature at higher altitudes. The use of alternative fuels resulted in lower CO₂ emissions, ranging from 0.7% to 1.7% for 50% to 100% synthetic fuel in the fuel mixture at various altitudes. In terms of CO, the use of 100% FT fuel resulted in CO reduction up to 9.7% at 1525 m altitude and up to 5.9% at 9145 m altitude.
X