Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A new mechanical variable valve actuation system for motorcycle engines

2009-09-13
2009-24-0080
This paper deals with the design and manufacturing of a mechanical variable valve actuation system, developed as part of the MUR financed research project concerning the realization of a high performance motorcycle engine, through a partnership of Moto Morini S.P.A. (BO), Dell’Orto S.P.A. (MI), Istituto Motori - CNR (NA), and DIME - Università di Napoli Federico II. After a synthetic description of the main variable valve actuation methods currently employed (timing, duration and lift variation, cyclic cylinder deactivation), the paper presents the results of our mechanical variable valve actuation system, consisting of three main elements: cam, main rocker arm with fixed fulcrum and secondary rocker arm with mobile fulcrum. It enables valve lift variation through a simple translation of the intermediate element (system 1).
Technical Paper

Dual Fuel Diesel Engine at Variable Operating Conditions: A Numerical and Experimental Study

2015-09-06
2015-24-2411
The dual-fuel (diesel/natural gas, NG) concept represents a solution to reduce emissions from diesel engines by using natural gas as an alternative fuel. As well known, the dual-fuel technology has the potential to offer significant improvements in the emissions of carbon dioxide from light-duty compression ignition engines. A further important requirement of the DF operation in automotive engines is a satisfactory response in a wide range of load levels. In particular, the part-load levels could present more challenging conditions for an efficient combustion development, due to the poor fuel/air ratio. Basing on the above assumptions, the authors discuss in this article the results of a combined numerical and experimental study on the effect of different injection timings on performance and pollutant fractions of a common rail diesel engine supplied with natural gas and diesel oil.
Technical Paper

Design and Development of a Test Rig for E-bike Performance Evaluation

2015-09-06
2015-24-2542
The paper describes the development of an innovative test rig for the evaluation of e-bikes in terms of energetic performances and control system. The test rig has been realized starting from a commercial cyclist training system and suitably modified. The test rig is able to reproduce an aforethought route or paths acquired during road tests. It is possible to measure the performance of the e-bike in terms of instantaneous power and speed, by the installed sensors and data acquisition system. The experimental test rig can simulate the resistant torque of a predetermined track and it aims to test and to optimize the control strategy available on the electronic control unit (ECU). An important feature of the system is represented by the possibility to adopt a hardware in the loop approach for the testing of the e-bike and of its control. Indeed, the whole control algorithm can be implemented on a suitable controller board able to execute real time processes.
X