Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Optimization of Control Parameters for a Heavy-Duty CNG Engine via Co-Simulation Analysis

2011-04-12
2011-01-0704
Internal combustion engines for vehicle propulsion are more and more sophisticated due to increasingly restrictive environmental regulations. In case of heavy-duty engines, Compressed Natural Gas (CNG) fueling coupled with Three-Way Catalyst (TWC) and Exhaust Gas Recirculation (EGR) can help in meeting the imposed emission limits and preventing from thermal stress of engine components. To cope with the new issues associated with the more complex hardware and to improve powertrain performance and reliability and after-treatment efficiency, the engine control strategies must be reformulated. The paper focuses on the steady-state optimization of control parameters for a heavy-duty engine fueled by CNG and equipped with turbocharger and EGR. The optimization analysis is carried out to design EGR, spark timing and wastegate control, aimed at increasing fuel economy while reducing in-cylinder temperature to prevent from thermal stress of engine components.
Technical Paper

Experimental Analysis of a Single-Cylinder Large Bore Engine with External Supercharging in Diesel/CNG Dual-Fuel Mode

2023-08-28
2023-24-0058
The need for a quick reduction in greenhouse gasses and noxious emissions is pushing maritime transportation to increase the use of alternative fuels. Natural Gas (NG) is well recognized as an effective solution to limit the use of marine diesel oil in the short/mid-term. In this scenario, dual-fuel technology is used to enable a conventional diesel engine to operate with a share of gaseous fuel while retaining the capability to run in full diesel mode. Dual-fuel (DF) engines allow the use of natural gas, or biomethane from renewable sources, as the main fuel, with advantages over CO2, SOx and PM emissions with the same levels of NOx. This paper presents an experimental study investigating the effects of the diesel injection strategy on performance and emissions of a dual-fuel, single-cylinder, large bore, 4-stroke engine for marine applications.
X