Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Large Eddy Simulation of Flow over a Valve in a Simplified Cylinder Geometry

2011-04-12
2011-01-0843
This study focuses on gaining a deeper understanding on the formation of turbulence and other in-cylinder flow structures caused by the intake jets during the intake stroke in internal combustion engines. This is important as the in-cylinder turbulence has a large effect on the mixing of fuel and oxidizer. A fine resolution large eddy simulation (LES) is carried out on an incompressible flow (Re is equivalent to 100,000) over a static valve (lift d = 7 mm) alongside with three other simulations using coarser meshes. The problem is studied in a simplified valve-cylinder geometry on which experimental data by Yasar et al., (2006) is available. The vortex cores, produced by the shear layer of the intake jets, are visualized using the λ₂ definition for vortex cores. The governing flow structures are identified and some features of the flow's mixing capabilities are observed. Additionally, the mixing is studied by releasing a passive scalar into to the flow.
Technical Paper

Interaction of Multiple Fuel Sprays in a Heavy-Duty Diesel Engine

2011-04-12
2011-01-0841
This paper aims to study numerically the influence of the number of fuel sprays in a single-cylinder diesel engine on mixing and combustion. The CFD simulations are carried out for a heavy-duty diesel engine with an 8 hole injector in the standard configuration. The fuel spray mass-flow rate was obtained from 1D-simulations and has been adjusted according to the number of nozzle holes to keep the total injected fuel mass constant. Two cases concerning the modified mass-flow rate are studied. In the first case the injection time was decreased whereas in the second case the nozzle hole diameter was decreased. In both cases the amount of nozzle holes (i.e. fuel sprays) was increased in several steps to 18 holes. Quantitative analyses were performed for the local air-fuel ratio, homogeneity of mixture distribution, heat release rate and the resulting in-cylinder pressure.
Technical Paper

Near Nozzle Diesel Spray Modeling and X-Ray Measurements

2006-04-03
2006-01-1390
In this paper the KH-RT and the CAB droplet breakup models are analyzed. The focus is on near nozzle spray simulation data that will be qualitatively compared with results obtained from x-ray experiments. Furthermore, the suitability of the x-ray method for spray studies is assessed and its importance for droplet breakup modeling is discussed. The simulations have been carried out with the Kiva3VRel2 CFD-code into which the KH-RT- and the CAB- droplet breakup models have been implemented. Since the x-ray method gives an integrated line-of-sight mass distribution of the spray, a suitable comparison of the experimental distributions and the simulated ones is made. Additionally, modeling aspects are discussed and the functioning of the models demonstrated by illustrating how the parcel Weber numbers and radii vary spatially. The transient nature of the phenomenon is highlighted and the influence of the breakup model parameters is discussed.
X