Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Characteristics of High Pressure Jets for Direct Injection Gas Engine

2013-04-08
2013-01-1619
The direct injection (DI) natural gas engine is considered as one of the promising technologies to achieve the continuing goals of the higher efficiency and reduced emissions for internal combustion engines. Shock wave phenomena can easily occur near the nozzle exit when high pressure gaseous fuel is injected directly into the engine cylinder. In the present study, high pressure gas issuing from a prototype gas injector was experimentally studied using planar laser-induced fluorescence (PLIF) technique. Acetone was selected as a fuel tracer. The effects of injection pressures on the flow structure and turbulent mixing were investigated based on a series of high resolution images. The jet macroscopic structures, such as jet penetration, cone angle and jet volume, are analyzed under different injection pressures. Results show that barrel shock waves can significantly influence the jet flow structure and turbulent mixing.
Technical Paper

Large Eddy Simulation of Flow over a Valve in a Simplified Cylinder Geometry

2011-04-12
2011-01-0843
This study focuses on gaining a deeper understanding on the formation of turbulence and other in-cylinder flow structures caused by the intake jets during the intake stroke in internal combustion engines. This is important as the in-cylinder turbulence has a large effect on the mixing of fuel and oxidizer. A fine resolution large eddy simulation (LES) is carried out on an incompressible flow (Re is equivalent to 100,000) over a static valve (lift d = 7 mm) alongside with three other simulations using coarser meshes. The problem is studied in a simplified valve-cylinder geometry on which experimental data by Yasar et al., (2006) is available. The vortex cores, produced by the shear layer of the intake jets, are visualized using the λ₂ definition for vortex cores. The governing flow structures are identified and some features of the flow's mixing capabilities are observed. Additionally, the mixing is studied by releasing a passive scalar into to the flow.
Technical Paper

An Experimental Study on High Pressure Pulsed Jets for DI Gas Engine Using Planar Laser-Induced Fluorescence

2012-09-10
2012-01-1655
Compressed natural gas direct-injection (CNG-DI) engines based on diesel cycle combustion system with pilot ignition have ability to achieve high thermal efficiency and low emissions. Generally, underexpanded jets can be formed when the high pressure natural gas is injected into the combustion chamber. In such conditions, shock wave phenomena are the typical behaviors of the jet, which can significantly influence the downstream flow structure and turbulent mixing. In the present study, the characteristics of high-pressure transient jets were investigated using planar laser-induced fluorescence (PLIF) of acetone as a fuel tracer. The evolution of the pulsed jet shows that there are three typical jet flow patterns (subsonic, moderately underexpanded, and highly underexpanded) during the injection. The full injection process of high-pressure pulsed jets is well described with the help of these shock wave structures.
X