Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Mixer Development for Urea SCR Applications

2009-10-06
2009-01-2879
2010 and future EPA regulations introduce stringent Oxides of Nitrogen (NOx) reduction targets for diesel engines. Selective Catalytic Reduction (SCR) of NOx by Urea over catalyst has become one of the main solutions to achieve these aggressive reductions. As such, urea solution is injected into the exhaust gas, evaporated and decomposed to ammonia via mixing with the hot exhaust gas before passing through an SCR catalyst. Urea mixers, in this regard, are crucial to ensure successful evaporation and mixing since its liquid state poses significant barriers, especially at low temperature conditions that incur undesired deposits. Intensive efforts have been taken toward developing such urea mixers, and multiple criteria have been derived for them, mainly including NOx reduction efficiency and uniformity. In addition, mixers must also satisfy other requirements such as low pressure drop penalty, mechanical strength, material integrity, low cost, and manufacturability.
Technical Paper

A Dual - Reductant HC LNC Approach to Commercial Vehicle Tier 4 Final Solutions

2011-09-13
2011-01-2203
Stringent global emissions legislations demand effective NOx reduction strategies for both the engine as well as the aftertreatment. Diesel applications have previously applied Lean NOx Catalysts (LNCs) [1, 2], but their reduction efficiency and longevity have been far less than that of the competing ammonia-based SCR systems, such as urea [3]. A catalyst has been developed to significantly reduce NOx emissions, approaching 60% with ULSD and exceeding 95% with E85. Both thermal and sulfur aging are applied, as well as on-engine aging, illustrating resilient performance to accommodate necessary life requirements. A robust system is developed to introduce both ULSD from the vehicle's tank as well as E85 (up to 85% ethanol with the balance being gasoline) from a moderately sized supplemental tank, enabling extended mileage service intervals to replenish the reductant, as compared with urea, particularly when coupled with an engine-out based NOx reduction technology, such as EGR.
Technical Paper

Transient Performance of an HC LNC Aftertreatment System Applying Ethanol as the Reductant

2012-09-24
2012-01-1957
As emissions regulations around the world become more stringent, emerging markets are seeking alternative strategies that align with local infrastructures and conditions. A Lean NOx Catalyst (LNC) is developed that achieves up to 60% NOx reduction with ULSD as its reductant and ≻95% with ethanol-based fuel reductants. Opportunities exist in countries that already have an ethanol-based fuel infrastructure, such as Brazil, improving emissions reduction penetration rates without costs and complexities of establishing urea infrastructures. The LNC performance competes with urea SCR NOx reduction, catalyst volume, reductant consumption, and cost, plus it is proven to be durable, passing stationary test cycles and adequately recovering from sulfur poisoning. Controls are developed and applied on a 7.2L engine, an inline 6-cylinder non-EGR turbo diesel.
X