Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Computational Investigation of Flash-Boiling Multi-hole Injectors with Gasoline-Ethanol Blends

2011-04-12
2011-01-0384
Gasoline-direct injection using multi-hole nozzles is prone to flash-boiling due to the transfer of thermal energy to the fuel combined with the sub-atmospheric pressures present in the cylinder during injection. Flash boiling is governed by a finite rate interphase heat-transfer mechanism and hence a thermal non-equilibrium model was used for simulations. Additionally, the fuel composition plays an important role in flash boiling and hence, any modeling of this phenomena must account for the type of fuel being used. In the current work, in addition to single component fuels, a non-ideal mixing model is used to calculate the properties of gasoline-ethanol blends. The flash boiling of the different single and multi-component fuels is compared and a parametric study is conducted to observe the importance of flash boiling. The purpose of this study is to use CFD calculations to propose dimensionless parameters that can help to understand how multiple time scales interact.
Technical Paper

Model Constant Optimization Using an Ensemble of Experimental Data

2012-04-16
2012-01-0131
Given the complexities of simulating fuel injection, most models contain empirical parameters. This work presents a method of automatically adjusting empirical model parameters in a computational fluid dynamics (CFD) sub-model in order to best agree with an ensemble of experimental measurements. The method is demonstrated by a multiphase flow simulation of flash-boiling fuel injector nozzles. This paper describes a framework to automatically set inputs, launch individual runs, read the output of these runs, and intelligently choose new input values based on the difference between calculated mass flow rates and experimental values, in order to minimize error. The Hooke-Jeeves search algorithm was chosen for the optimization process, since it is reasonably efficient, does not require calculating derivatives, and is robust. The scheme scales well when employed on computer clusters, where numerous calculations can be run simultaneously using a batch queuing system.
Technical Paper

Comparison of the Homogeneous Relaxation Model and a Rayleigh Plesset Cavitation Model in Predicting the Cavitating Flow Through Various Injector Hole Shapes

2013-04-08
2013-01-1613
Two cavitation models are evaluated based on their ability to reproduce the development of cavitation experimentally observed by Winklhofer et al. inside injector hole geometries. The first is Singhal's model, derived from a reduced form of the Rayleigh-Plesset equation, implemented in the commercial CFD package Fluent. The second is the homogeneous relaxation model, a continuum model that uses an empirical timescale to reproduce a range of vaporization mechanisms, implemented in the OpenFOAM framework. Previous work by Neroorkar et al. validated the homogeneous relaxation model for one of the nozzle geometries tested by Winklhofer et al. The present work extends that validation to all the three geometries considered by Winklhofer et al in order to compare the models' ability to capture the effects of nozzle convergence.
X