Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

The Potential of Gasoline Fueled Pre Chamber Ignition Combined with Elevated Compression Ratio

2020-04-14
2020-01-0279
Pre-chamber ignition is a method to simultaneously increase the thermal efficiency and to meet ever more stringent emission regulations at the same time. In this study, a single cylinder research engine is equipped with a tailored pre-chamber ignition system and operated at two different compression ratios, namely 10.5 and 14.2. While most studies on gasoline pre-chamber ignition employ port fuel injection, in this work, the main fuel quantity is introduced by side direct injection into the combustion chamber to fully exploit the knock mitigation effect. Different pre-chamber design variants are evaluated considering both unfueled and gasoline-fueled operation. As for the latter, the influence of the fuel amount supplied to the pre-chamber is discussed. Due to its principle, the pre-chamber ignition system increases combustion speeds by generating enhanced in-cylinder turbulence and multiple ignition sites. This property proves to be an effective measure to mitigate knocking effects.
Technical Paper

Review of Potential CO2-Neutral Fuels in Passenger Cars in Context of a Possible Future Hybrid Powertrain

2021-09-21
2021-01-1229
To minimize the impact of global warming worldwide, net greenhouse-gas (GHG) emissions have to be reduced. The transportation sector is one main contributor to overall greenhouse gas emissions due to the fact that most of the current propulsion systems rely on fossil fuels. The gasoline engine powertrain is the most used system for passenger vehicles in the EU and worldwide. Besides emitting GHG, gasoline driven cars emit harmful pollutants, which can cause health issues for humans. Hybrid powertrains provide an available short-term solution to reduce fuel consumption and thus overall emissions. Therefore, an overview of the currently available technology and methodology of hybrid cars is provided in this paper as well as an overview of the performance of current HEV cars in real world testing. From the testing, it can be concluded that despite reducing harmful emissions, hybrid vehicles still emit pollutants and GHG when fueled with conventional gasoline.
Journal Article

Potential Analysis of a DMC/MeFo Mixture in a DISI Single and Multi-Cylinder Light Vehicle Gasoline Engine

2021-04-06
2021-01-0561
In this study a mixture of dimethyl carbonate (DMC) and methyl formate (MeFo) was used as a synthetic gasoline replacement. These synthetic fuels offer CO2-neutral mobility if the fuels are produced in a closed CO2-cycle and they reduce harmful emissions like particulates and NOX. For base potential investigations, a single-cylinder research engine (SCE) was used. An in-depth analysis of real driving cycles in a series 4-cylinder engine (4CE) confirmed the high potential for emission reduction as well as efficiency benefits. Beside the benefit of lower exhaust emissions, especially NOX and particle number (PN) emissions, some additional potential was observed in the SCE. During a start of injection (SOI) variation it could be detected that a late SOI of DMC/MeFo has less influence on combustion stability and ignitability. With this widened range for the SOI the engine application can be improved for example by catalyst heating or stratified mode.
Technical Paper

Optical Investigations of an Oxygenated Alternative Fuel in a Single Cylinder DISI Light Vehicle Gasoline Engine

2021-04-06
2021-01-0557
In this study, a fully optically accessible single-cylinder research engine is the basis for the visualization and generation of extensive knowledge about the in-cylinder processes of mixture formation, ignition and combustion of oxygenated synthetic fuels. Previous measurements in an all-metal engine showed promising results by using a mixture of dimethyl carbonate and methyl formate as a fuel substitute in a DISI-engine. Lower THC and NOx emissions were observed along with a low PN-value, implying low-soot combustion. The flame luminosity transmitted via an optical piston was split in the optical path to simultaneously record the natural flame luminosity with an RGB high-speed camera. The second channel consisted of OH*-chemiluminescence recording, isolated by a bandpass filter via an intensified monochrome high-speed camera.
Technical Paper

Adaptation and Engine Validation of an FTIR Exhaust Gas Analysis Method for C1-Based Potential GHG-Neutral Synthetic Fuels/Gasoline-Blends Containing Dimethyl Carbonate and Methyl Formate

2022-03-29
2022-01-0569
The European Commission has released strict emission regulations for passenger cars in the past decade in order to improve air quality in cities and limit harmful emission exposure to humans. In the near future, even stricter regulations containing more realistic/demanding driving scenarios and covering more exhaust gas components are expected to be released. Passenger cars fueled with gasoline are one contributor to unhealthy air conditions, due to the fact that gasoline engines emit harmful air pollutants. One option to minimize harmful emissions would be to utilize specifically tailored, low emission synthetic fuels or fuel blends in internal combustion engines. Methyl formate and dimethyl carbonate are two promising candidates to replace or substitute gasoline, which in previous studies have proven to significantly decrease harmful pollutants.
Technical Paper

Optimization of the Mixture Formation for Combined Injection Strategies in High-Performance SI-Engines

2015-09-06
2015-24-2476
Alongside with the severe restrictions according to technical regulations of the corresponding racing series (air and/or fuel mass flow), the optimization of the mixture formation in SI-race engines is one of the most demanding challenges with respect to engine performance. Bearing in mind its impact on the ignition behavior and the following combustion, the physical processes during mixture formation play a vital role not only in respect of the engine's efficiency, fuel consumption, and exhaust gas emissions but also on engine performance. Furthermore, abnormal combustion phenomena such as engine knock may be enhanced by insufficient mixture formation. This can presumably be explained by the strong influence of the spatial distribution of the air/fuel-ratio on the inflammability of the mixture as well as the local velocity of the turbulent flame front.
Technical Paper

Turbocharging of a Two-cylinder Lean-Burn Natural Gas Engine with Uneven Firing Order

2014-04-01
2014-01-1652
At the Institute of Internal Combustion Engines of the Technische Universitaet Muenchen a drivetrain for urban and commuter traffic is under development. The concept is based on a lean-burn air-cooled two-cylinder natural gas engine which is combined with a hydraulic hybrid system. The engine is initially mechanically charged which results in an engine speed dependent torque. Turbocharging the natural gas fuelled engine derives increased engine torque especially at low engine speeds and exploits the potential of better knock resistance of natural gas compared to gasoline fuel. The paper presents a turbocharging concept for the two-cylinder engine at first. The firing order of 180/540°CA due to the crank shaft design and the lean-burn combustion are challenging restrictions to cope with. The consequences of the uneven firing order are investigated using 1D-simulation and the matching of the exhaust gas turbocharger is shown.
Technical Paper

Virtual Investigation of Real Fuels by Means of 3D-CFD Engine Simulations

2019-09-09
2019-24-0090
The reduction of both harmful emissions (CO, HC, NOx, etc.) and gases responsible for greenhouse effects (especially CO2) are mandatory aspects to be considered in the development process of any kind of propulsion concept. Focusing on ICEs, the main development topics are today not only the reduction of harmful emissions, increase of thermodynamic efficiency, etc. but also the decarbonization of fuels which offers the highest potential for the reduction of CO2 emissions. Accordingly, the development of future ICEs will be closely linked to the development of CO2 neutral fuels (e.g. biofuels and e-fuels) as they will be part of a common development process. This implies an increase in development complexity, which needs the support of engine simulations. In this work, the virtual modeling of real fuel behavior is addressed to improve current simulation capabilities in studying how a specific composition can affect the engine performance.
Technical Paper

Comparison of Promising Sustainable C1-Fuels Methanol, Dimethyl Carbonate, and Methyl Formate in a DISI Single-Cylinder Light Vehicle Gasoline Engine

2021-09-21
2021-01-1204
On the way to a climate-neutral mobility, synthetic fuels with their potential of CO2-neutral production are currently in the focus of internal combustion research. In this study, the C1-fuels methanol (MeOH), dimethyl carbonate (DMC), and methyl formate (MeFo) are tested as pure fuel mixtures and as blend components for gasoline. The study was performed on a single-cylinder engine in two configurations, thermodynamic and optical. As pure C1-fuels, the previously investigated DMC/MeFo mixture is compared with a mixture of MeOH/MeFo. DMC is replaced by MeOH because of its benefits regarding laminar flame speed, ignition limits and production costs. MeOH/MeFo offers favorable particle number (PN) emissions at a cooling water temperature of 40 °C and in high load operating points. However, a slight increase of NOx emissions related to DMC/MeFo was observed. Both mixtures show no sensitivity in PN emissions for rich combustions. This was also verified with help of the optical engine.
Journal Article

Analysis of the Piston Group Friction in a Single-Cylinder Gasoline Engine When Operated with Synthetic Fuel DMC/MeFo

2022-03-29
2022-01-0485
Synthetic fuels for internal combustion engines offer CO2-neutral mobility if produced in a closed carbon cycle using renewable energies. C1-based synthetic fuels can offer high knock resistance as well as soot free combustion due to their molecular structure containing oxygen and no direct C-C bonds. Such fuels as, for example, dimethyl carbonate (DMC) and methyl formate (MeFo) have great potential to replace gasoline in spark-ignition (SI) engines. In this study, a mixture of 65% DMC and 35% MeFo (C65F35) was used in a single-cylinder research engine to determine friction losses in the piston group using the floating-liner method. The results were benchmarked against gasoline (G100). Compared to gasoline, the density of C65F35 is almost 40% higher, but its mass-based lower heating value (LHV) is 2.8 times lower. Hence, more fuel must be injected to reach the same engine load as in a conventional gasoline engine, leading to an increased cooling effect.
X