Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental Analysis and Dynamic Optimization Design of Hinge Mechanism

2023-04-11
2023-01-0777
Optimization design of hard point parameters for hinge mechanism has been paid more attention in recent years, attributable to their significant improvement in dynamic performance. In this paper, the experimental analysis and dynamic optimization design of hinge mechanism is performed. The acceleration measurement experiments are carried out at different arrangement points and under different working conditions. Furthermore, the accuracy of established multi-body dynamics model is verified by three-axis accelerometer measurement experiment. In addition, sensitivity analysis for electric strut and gas strut coordinates is performed and shows that the Y coordinate of the lower end point of the electric strut is the design variable that has the greatest impact on the responses.
Technical Paper

Load Spectrum Extraction of Double-Wishbone Independent Suspension Bracket Based on Virtual Iteration

2023-04-11
2023-01-0774
The displacement of the shaft head fails to be accurately measured while the three-axle heavy-duty truck is driving on the reinforced pavement. In order to obtain accurate fatigue load spectrum of the suspension bracket, the acceleration signals of the shaft heads of the suspension obtained by the reinforced pavement test measurement are virtually iterated as responses. A more accurate model of the rigid-flexible coupled multi-body dynamics (MBD) of the whole vehicle is established by introducing a flexible frame based on the comprehensive modal theory. Furthermore, the vertical displacements of the shaft heads are obtained by the reverse solution of the virtual iterative method with well-pleasing precision. The accuracy of the virtual iteration is verified by comparing the simulation results with the vertical acceleration of the shaft head under the reinforced pavement in the time domain and damage domain.
Journal Article

The Study on Fatigue Bench Test and Durability Evaluation of a Light Truck Cab

2020-04-14
2020-01-0760
The cab is an essential part of a light truck, and its fatigue durability performance plays an important role in the design and development stage. Accelerated fatigue bench test has been widely applied to product development of carmakers for its low cost and short development cycle. However, in reality, interference exists generally in torsional conditions for the light truck cab when tested on the 4-post vehicle road simulation system. To solve this problem and minimize the lateral force applied on the hydraulic cylinders, the direction and size combinations of displacement release about front and rear suspensions were discussed based on multi-body dynamics simulation and fixture design theory in this paper. Through comparative study, the optimum design and layout scheme of fixtures was determined to conduct the next test procedure. The weak positions of the light truck cab were firstly predicted by utilizing finite element method (FEM) and fatigue analysis theory.
X