Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

The Development of an Highly Modular Designed Zero-Dimensional Engine Process Calculation Code

2010-04-12
2010-01-0149
The main objective of the FVV-project “Cylinder Module” was the development of a profoundly modular designed concept for object-oriented modeling of in-cylinder processes of internal combustion engines. It was designed in such a way, that it can either be used as a stand-alone real working-process calculation tool or in tools for whole vehicle simulations. It is possible to run the “Cylinder Module”-code inside the FVV-“GPA”-software for transient vehicle and driving cycle simulations and it is possible to use the graphical user interface “ATMOS” of the “GPA”-project. The code can also be used as a user-subroutine in 1-D-flow simulation codes. Much effort was spent on the requirements of flexibility and expandability in order to be well prepared to cope with the diversity of both today's and future tasks. The code is freely available for members of the German Research Association for Combustion Engines (FVV).
Technical Paper

Fundamentals of Pressure Trace Analysis for Gasoline Engines with Homogeneous Charge Compression Ignition

2010-10-25
2010-01-2182
Regarding further development of gasoline engines several new technologies are investigated in order to diminish pollutant emissions and particularly fuel consumption. The Homogeneous Charge Compression Ignition (HCCI) seems to be a promising way to reach these targets. Therefore, in the past years there had been a lot of experimental efforts in this field of combustion system engineering. Negative valve overlap with pilot injection before pumping top dead center (PTDC) and an “intermediate” compression and combustion during PTDC, followed by the main injection after PTDC, is one way to realize and to proper control a HCCI operation. For conventional CI and SI combustion the pressure trace analysis (PTA) is a powerful and widely used tool to analyse, understand and optimize the combustion process.
Technical Paper

Simulation of the Post-Oxidation in Turbo Charged SI-DI-Engines

2011-04-12
2011-01-0373
Turbocharged SI-DI-engines in combination with a reduction of engine displacement (“Downsizing”) offer the possibility to remarkably reduce the overall fuel consumption. In charged mode it is possible to scavenge fresh unburnt air into the exhaust system if a positive slope during the overlap phase of the gas exchange occurs. The matching of the turbo system in SI-engines always causes a trade-off between low-end torque and high power output. The higher mass flow at low engine speeds of an engine using scavenging allows a partial solution of this trade-off. Thus, higher downsizing grades and fuel consumption reduction potential can be obtained. Through scavenging the global fuel to air ratio deviates from the local in-cylinder fuel to air ratio. It is possible to use a rich in-cylinder fuel to air ratio, whereas the global fuel to air ratio remains stochiometrical. This could be very beneficial to reduce the effect of catalytic aging on the one hand and engine knock on the other hand.
X