Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Multiphase CFD-CHT Analysis and Optimization of the Cooling Jacket in a V6 Diesel Engine

2010-10-25
2010-01-2096
The paper presents a numerical activity directed at the analysis and optimization of internal combustion engine water cooling jackets, with particular emphasis on the fatigue-strength assessment and improvement. In the paper, full 3D-CFD and FEM analyses of conjugate heat transfer and load cycle under actual engine operation of a single bank of a current production V6 turbocharged diesel engine are reported. A highly detailed model of the engine, made up of both the coolant galleries and the surrounding metal components, i.e., the engine head, the engine block, the gasket, the valve guides and valve seats, is used on both sides of the simulation process to accurately capture the influence of the cooling system layout under thermal and load conditions as close as possible to actual engine operations.
Technical Paper

Validation of a CFD Methodology for the Analysis of Conjugate Heat Transfer in a High Performance SI Engine

2011-09-11
2011-24-0132
The paper presents a combined experimental and numerical activity carried out to improve the accuracy of conjugate heat transfer CFD simulations of a high-performance S.I. engine water cooling jacket. Due to the complexity of the computational domain, which covers both the coolant jacket and the surrounding metal cast (both head and block), particular care is required in order to find a tradeoff between the accuracy and the cost-effectiveness of the numerical procedure. In view of the presence of many complex physical phenomena, the contribution of some relevant CFD parameters and sub-models is separately evaluated and discussed. Among the formers, the extent of the computational domain, the choice of a proper set of boundary conditions and the detailed representation of the physical properties of the involved materials are separately considered.
X