Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Integrated In-Cylinder / CHT Methodology for the Simulation of the Engine Thermal Field: An Application to High Performance Turbocharged DISI Engines

2016-04-05
2016-01-0578
New SI engine generations are characterized by a simultaneous reduction of the engine displacement and an increase of the brake power; such targets are achieved through the adoption of several techniques such as turbocharging, direct fuel injection, variable valve timing and variable port lengths. This design approach, called “downsizing”, leads to a marked increase in the thermal loads acting on the engine components, in particular on those facing the combustion chamber. Hence, an accurate evaluation of the thermal field is of primary importance in order to avoid mechanical failures. Moreover, the correct evaluation of the temperature distribution improves the prediction of pointwise abnormal combustion onset.
Technical Paper

Multiphase CFD-CHT Analysis and Optimization of the Cooling Jacket in a V6 Diesel Engine

2010-10-25
2010-01-2096
The paper presents a numerical activity directed at the analysis and optimization of internal combustion engine water cooling jackets, with particular emphasis on the fatigue-strength assessment and improvement. In the paper, full 3D-CFD and FEM analyses of conjugate heat transfer and load cycle under actual engine operation of a single bank of a current production V6 turbocharged diesel engine are reported. A highly detailed model of the engine, made up of both the coolant galleries and the surrounding metal components, i.e., the engine head, the engine block, the gasket, the valve guides and valve seats, is used on both sides of the simulation process to accurately capture the influence of the cooling system layout under thermal and load conditions as close as possible to actual engine operations.
Technical Paper

A Comprehensive CFD-CHT Methodology for the Characterization of a Diesel Engine: from the Heat Transfer Prediction to the Thermal Field Evaluation

2017-10-08
2017-01-2196
High power-density Diesel engines are characterized by remarkable thermo-mechanical loads. Therefore, compared to spark ignition engines, designers are forced to increase component strength in order to avoid failures. 3D-CFD simulations represent a powerful tool for the evaluation of the engine thermal field and may be used by designers, along with FE analyses, to ensure thermo-mechanical reliability. The present work aims at providing an integrated in-cylinder/CHT methodology for the estimation of a Diesel engine thermal field. On one hand, in-cylinder simulations are fundamental to evaluate not only the integral amount of heat transfer to the combustion chamber walls, but also its point-wise distribution. To this specific aim, an improved heat transfer model based on a modified thermal wall function is adopted to estimate correctly wall heat fluxes due to combustion.
Technical Paper

Combined In-cylinder / CHT Analyses for the Accurate Estimation of the Thermal Flow Field of a High Performance Engine for Sport Car Applications

2013-04-08
2013-01-1088
The paper describes an integrated methodology for the accurate characterization of the thermal behavior of internal combustion engines, with particular reference to a high performance direct injected SI engine for sport car applications. The engine is operated at full load and maximum power revving speed, which is known to be critical from the point of view of thermal stresses on the engine components. In particular, two different sets of 3D-CFD calculations are adopted: on one side, full-cycle in-cylinder analyses are carried out to estimate the point wise thermal heat flux due to combustion on the engine components facing the combustion chamber. On the other side, full-engine multi-region CHT calculations covering the engine coolant jacket and the surrounding metal components are used to compute the point wise temperature distribution within the engine head, liner and block.
Technical Paper

Preliminary Assessment of Hydrogen Direct Injection Potentials and Challenges through a Joint Experimental and Numerical Characterization of High-Pressure Gas Jets

2022-09-16
2022-24-0014
The interest towards hydrogen fueling in internal combustion engines (ICEs) is rapidly growing, due to its potential impact on the reduction of the carbon footprint of the road transportation sector in a short-term scenario. While the conversion of the existing fleet to a battery-electric counterpart is highly debated in terms of both technical feasibility and life-cycle-based environmental impact, automotive researchers and technicians are exploring other solutions to reduce, if not to nullify, the carbon footprint of the existing ICE fleet. Indeed, ICE conversion to “green” fuels is seen as a promising short-term solution which does not require massive changes in powertrain production and end-of-life waste management. To better evaluate potentials and challenges of hydrogen fueling, a clear understanding of fuel injection and mixture formation prior to combustion is mandatory.
Technical Paper

Analysis of Turbulence Model Effect on the Characterization of the In-Cylinder Flow Field in a HSDI Diesel Engine

2013-04-08
2013-01-1107
In-cylinder large scale and small scale structures are widely recognized to strongly influence the mixing process in HSDI Diesel engines, and therefore combustion and pollutant emissions. In particular, swirl motion intensity and temporal evolution during the intake and compression strokes must be correctly estimated to properly target the spray jets. The experimental characterization of the attitude of a valve/port assembly to promote swirl is traditionally limited to the steady flow bench, in which the analysis is carried out for fixed valve positions / fixed pressure drops and with no piston. Since flow bench analyses cannot reproduce the highly complex instantaneous flow conditions typical of actual engine operations, the use of fully-transient in-cylinder numerical simulations can become extremely useful to correctly address the engine ability to promote adequate flow structures and patterns.
Technical Paper

A Comparison between Different Moving Grid Techniques for the Analysis of the TCC Engine under Motored Conditions

2019-04-02
2019-01-0218
The accurate representation of Internal Combustion Engine (ICE) flows via CFD is an extremely complex task: it strongly depends on a combination of highly impacting factors, such as grid resolution (both local and global), choice of the turbulence model, numeric schemes and mesh motion technique. A well-founded choice must be made in order to avoid excessive computational cost and numerical difficulties arising from the combination of fine computational grids, high-order numeric schemes and geometrical complexity typical of ICEs. The paper focuses on the comparison between different mesh motion technologies, namely layer addition and removal, morphing/remapping and overset grids. Different grid strategies for a chosen mesh motion technology are also discussed. The performance of each mesh technology and grid strategy is evaluated in terms of accuracy and computational efficiency (stability, scalability, robustness).
Technical Paper

Integrated In-Cylinder/CHT Analysis for the Prediction of Abnormal Combustion Occurrence in Gasoline Engines

2014-04-01
2014-01-1151
In order to improve fuel conversion efficiency, currently made spark-ignited engines are characterized by the adoption of gasoline direct injection, supercharging and/or turbocharging, complex variable valve actuation strategies. The resulting increase in power/size ratios is responsible for substantially higher average thermal loads on the engine components, which in turn result in increased risks of both thermo-mechanical failures and abnormal combustion events such as surface ignition or knock. The paper presents a comprehensive numerical methodology for the accurate estimation of knock tendency of SI engines, based on the integration of different modeling frameworks and tools. Full-cycle in-cylinder analyses are used to estimate the point-wise heat flux acting on the engine components facing the combustion chamber.
Technical Paper

Predictive 3D-CFD Model for the Analysis of the Development of Soot Deposition Layer on Sensor Surfaces

2023-08-28
2023-24-0012
After-treatment sensors are used in the ECU feedback control to calibrate the engine operating parameters. Due to their contact with exhaust gases, especially NOx sensors are prone to soot deposition with a consequent decay of their performance. Several phenomena occur at the same time leading to sensor contamination: thermophoresis, unburnt hydrocarbons condensation and eddy diffusion of submicron particles. Conversely, soot combustion and shear forces may act in reducing soot deposition. This study proposes a predictive 3D-CFD model for the analysis of the development of soot deposition layer on the sensor surfaces. Alongside with the implementation of deposit and removal mechanisms, the effects on both thermal properties and shape of the surfaces are taken in account. The latter leads to obtain a more accurate and complete modelling of the phenomenon influencing the sensor overall performance.
X