Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Dynamic Simulation of Interaction between Non-Pneumatic Tire and Sand

2010-04-12
2010-01-0377
In this paper, in support of developing an advanced non-pneumatic lunar tire, a dynamic interaction model between non-pneumatic tire and sand is presented using the Finite Element Method (FEM). This non-pneumatic tire is composed of three major components: a critical shear beam, two inextensible circumferential membranes, and deformable spokes. The non-pneumatic tire made of segmented cylinders is described in detail. The tire is treated as an elastic deformable body with the inertia effect is included. Lebanon sand found in New Hampshire is modeled as because of the availability of a complete set of material properties in the literature. The Drucker-Prager/Cap plasticity constitutive law with hardening is employed to model the sand. Numerical results show contact pressure distribution, distributions of various stresses and strains, deformation of non-pneumatic tire, and deformation of sand.
Technical Paper

Dynamic Impact Simulation of Interaction between Non-Pneumatic Tire and Sand with Obstacle

2011-04-12
2011-01-0184
In this paper, the Finite Element Method (FEM) is used to model and simulate the dynamic interaction between non-pneumatic tire and sand with obstacle to investigate the influence of obstacle on performance of the non-pneumatic tire. The non-pneumatic tire consists of three major components: two inextensible circumferential membranes, a critical shear beam, and a group of deformable spokes. The non-pneumatic tire fabricated of segmented cylinders is illustrated and the FEM model for the tire is given in detail. The tire is treated as an elastic deformable body with the inertia effect included. Lebanon sand found in New Hampshire is used in this simulation because of the availability of a complete set of material properties in the literature. Modified Drucker-Prager/Cap plasticity constitutive law with hardening is utilized to model the sand. The obstacle is represented as an elastic body.
X