Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effects of Cellular Shear Bands on Interaction between a Non-pneumatic Tire and Sand

2010-04-12
2010-01-0376
To facilitate the design of a non-pneumatic tire for NASA's new Moon mission, the authors used the Finite Element Method (FEM) to investigate the interaction between soil and non-pneumatic tire made of different cellular shear bands. Cellular shear bands, made of an aluminum alloy (AL7075-T6), are designed to have the same effective shear modulus of 6.5E+6 Pa, which is the shear modulus of an elastomer. The Lebanon sand of New Hampshire is used in the model. This sand has a complete set of material properties in the literature and Drucker-Prager/Cap plasticity constitutive law with hardening is employed to model the sand. The tires are treated as deformable bodies, and the authors used the penalty contact algorithm to model the tangential behavior of the contact. The friction between tire and sand is considered by using Coulomb's law. Numerical results show deformation of sand and tire.
Technical Paper

Numerical Investigation of Dynamic Impact between Cellular Shear Band Based Non-Pneumatic Tire and Sand with Obstacle

2013-04-08
2013-01-0631
In this paper, dynamic impact between cellular shear-band-based non-pneumatic tire and sand with obstacle is investigated by using the Finite Element Method (FEM) for the NASA's new Moon mission. In this research, the shear band with cellular geometry of (cell angle θ = -65°, cell height h = 21) is used. The Lebanon sand found in New Hampshire is used in this research and Drucker-Prager/Cap plasticity constitutive law with hardening is employed to describe the behavior of the sand. The obstacle is represented as an elastic body. Penalty contact algorithm is used to model the tangential behavior of the contact between the tire and sand. Coulomb's law is considered for the friction between tire and sand. Numerical results show the deformation of sand and tire. The effects of the running speed on the deformation of tire and sand, stresses and strains of the tire and sand, vertical accelerations of the hub center, horizontal reaction forces of the hub center are presented.
X