Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Life-Cycle Integration of Titanium Alloys into the Automotive Segment for Vehicle Light-Weighting: Part II - Component Life-Cycle Modeling and Cost Justification

2012-04-16
2012-01-0785
To warrant the substitution of traditionally used structural automotive materials with titanium alloys, the material substitutional and redesign advantages must be attainable at a justifiable cost. Typically, during material replacement with such ‘exotic’ aerospace alloys, the initial raw material cost is high; therefore, cost justification will need to be realized from a life-cycle cost standpoint. Part I of this paper highlighted the redesign, fabrication, and validation of an automotive component. Part II details the particulars of constructing the total life-cycle cost model for both prototypes (P1, P2). Considerations in the model include adaptation to a high volume production scenario, availability of near-net size plate/bar stock, etc. Further, response surfaces of fuel costs savings and consequent life-cycle costs (state-variables) are generated against life-cycle duration and unit fuel price (design-variables) to identify profitable operating conditions.
Technical Paper

Analysis of Stability of Motion of Intelligent Vehicle Systems

2022-03-29
2022-01-0096
This paper deals with stability of motion and its criteria for tracking control of intelligent vehicle systems. It deals with general control structure and specification of an optimum range of predefined control parameters for accurate tracking of these vehicle systems. A two degree of freedom (DOF) nonlinear dynamic model is developed to represent their plane motion. This model is further utilized in deriving a linear model that is used to do this stability analysis. Path tracking of the vehicle is attained by controlling the position and orientation errors about a predefined trajectory, which is accomplished by modifying the steering input signal on the basis of error feedbacks to the controller.
X