Refine Your Search

Search Results

Technical Paper

Control Allocation based Optimal Torque Vectoring for 4WD Electric Vehicle

2012-04-16
2012-01-0246
This paper describes an optimal torque vectoring strategy for 4WD electric vehicles (EV) in order to improve vehicle maneuverability, lateral stability and at the same time prevent vehicle rollover. The 4WD EV is driven using an in-line motor at a front driving shaft and in-wheel motors at rear wheels. Many previous studies have been conducted to determine a desired traction force and a yaw moment input for human driver's intention or vehicle stability control. The driving control algorithm consists of three parts: a supervisory controller that determines the control mode, admissible control region, and desired dynamics, such as the desired speed and yaw rate, an upper-level controller that computes the traction force input and yaw moment input to track the desired dynamics and an optimal torque vectoring algorithm that determines actuator commands, such as the front in-line motor, rear in-wheel motors and independent brake modules.
X