Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Flash Boiling: Easy and Better Way to Generate Ideal Sprays than the High Injection Pressure

2013-04-08
2013-01-1614
When heated fuel is injected into an ambient environment below its saturation pressure, the fuel could reach superheated state and experience flash boiling. Comparing with the non-flash boiling spray, namely the single phase liquid spray, flash boiling spray is characterized by its nature of two phase flow, due to vapor bubbles constantly generating inside the liquid phase. The behavior of those microscopic scale bubbles could introduce prompt spray atomization and vaporization, resulting in dramatically different spray characteristics. Comparing with the sprays generated via a high pressure injection system, the flash boiling spray has much shorter penetration, wider spray angle, more uniformly distributed mass, quicker evaporation, and smaller drop sizes, etc., which are ideal for the direct-injection (DI) gasoline and diesel engine applications without the hassle and the high cost associated with the high pressure injection system.
Technical Paper

Characterization of Methanol and Ethanol Sprays from Different DI Injectors by Using Mie-scattering and Laser Induced Fluorescence at Potential Engine Cold-start Conditions

2010-04-12
2010-01-0602
A laser sheet imaging system with Mie-scattering and Laser Induced Fluorescence (LIF) was used to investigate the spray characteristics of gasoline, methanol and ethanol fuels. A range of conditions found in today's gasoline engines were investigated including that observed during engine cold-start. Both a swirl injector and a multi-hole fuel injector were examined for each of the three fuels. A combination of the second harmonic (532 nm) and the fourth harmonic (266 nm) was generated simultaneously using a Nd:YAG laser system to illuminate the spray. The Mie-scattering technique was used to characterize the liquid phase of the spray while the LIF technique was used to detect a combination of liquid and vapor phases. While gasoline naturally fluoresced, the dopant TEA was added to the methanol and ethanol fuels as a fuel tracer. The Mie-scattering and LIF signals were captured simultaneously using a CCD camera along with an image doubler.
X