Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Improved Model for Coupled Structural-Acoustic Modes of Tires

2015-06-15
2015-01-2199
Experimental measurements of tire tread band vibration have provided direct evidence that higher order structural-acoustic modes exist in tires, not just the well-known fundamental acoustical mode. These modes display both circumferential and radial pressure variations within the tire's air cavity. The theory governing these modes has thus been investigated. A brief recapitulation of the previously-presented coupled structural-acoustical model based on a tensioned string approach will be given, and then an improved tire-acoustical model with a ring-like shape will be introduced. In the latter model, the effects of flexural and circumferential stiffness are considered. This improved model accounts for propagating in-plane vibration in addition to the essentially structure-borne flexural wave and the essentially airborne longitudinal wave accounted for in the previous model. The longitudinal structure-borne wave “cuts on” at the tire's circumferential ring frequency.
Technical Paper

Reconstruction of Noise Source in a Ducted Fan Using a Generalized Nearfield Acoustical Holography

2010-04-12
2010-01-0416
The identification of the propulsion noise of turbofan engines plays an important role in the design of low-noise aircraft. The noise generation mechanisms of a typical turbofan engine are very complicated and it is not practical, if not impossible, to identify these noise sources efficiently and accurately using numerical or experimental techniques alone. In addition, a major practical concern for the measurement of acoustic pressure inside the duct of a turbofan is the placement of microphones and their supporting frames which will change the flow conditions under normal operational conditions. The measurement of acoustic pressures on the surface of the duct using surface-mounted microphones eliminates this undesirable effect. In this paper, a generalized acoustical holography (GAH) method that is capable of estimating aeroacoustic sources using surface sound pressure is developed.
Technical Paper

Transfer Matrix Approach to the Estimation of the Fundamental Acoustical Properties of Noise Control Materials

1999-05-17
1999-01-1667
A new method for evaluating the acoustical properties of porous materials is described here. To implement the procedure, a two-microphone standing wave tube was modified to include: a new sample holder; a section that accommodated a second pair of microphones downstream of the sample holder; and an approximately anechoic termination. A four-point sound pressure method was then used to estimate the two-by-two transfer matrix of the material. The transfer matrix can then be used to determine the wave number and characteristic impedance of the material. The procedure has been used to estimate the acoustical properties of two glass fiber materials.
Technical Paper

The Identification of Minimum Weight Sound Packages That Meet Specified Vehicle Interior Sound Pressure Levels

2019-06-05
2019-01-1504
A vehicle’s fuel mileage is directly related to its CO2 emissions, which have a negative impact on the environment. This negative vehicle attribute can, of course, be mitigated by increasing the vehicle’s fuel mileage beyond current levels: the reduction of vehicle weight is one of the options automobile manufacturers can employ to meet that goal. Similarly, an electric vehicles range can be increased by reducing the vehicle’s weight. Therefore, the minimization of the weight of vehicle sound packages while maintaining their acoustical performance has a positive impact on the environment as well as on vehicle efficiency. In this research, a simple model of a vehicle front-of-dash sound package which consists of a limp porous layer placed in series with a flexible microperforated panel is considered.
Technical Paper

A Comparison of Near-Field Acoustical Holography Methods Applied to Noise Source Identification

2019-06-05
2019-01-1533
Near-Field Acoustical Holography (NAH) is an inverse process in which sound pressure measurements made in the near-field of an unknown sound source are used to reconstruct the sound field so that source distributions can be clearly identified. NAH was originally based on performing spatial transforms of arrays of measured pressures and then processing the data in the wavenumber domain, a procedure that entailed the use of very large microphone arrays to avoid spatial truncation effects. Over the last twenty years, a number of different NAH methods have been proposed that can reduce or avoid spatial truncation issues: for example, Statistically Optimized Near-Field Acoustical Holography (SONAH), various Equivalent Source Methods (ESM), etc.
X