Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Particle-Bound PAHs Emission from a Heavy Duty Diesel Engine with Biodiesel Fuel

2013-10-14
2013-01-2573
Regulated gaseous and particulate matter (PM) emissions in the exhaust from a heavy duty diesel engine with biodiesel fuel were studied, and the emission characteristics of PM and polycyclic aromatic hydrocarbons (PAHs) emissions in PM were highlighted. In the experiment, pure diesel fuel and B10 (a blend of diesel and biodiesel fuels with the volume ratio of 9 to 1) fuel were chosen. The study shows that, compared to the pure diesel, the emissions of PM, soluble organic fractions (SOF) and PAHs from the heavy duty diesel engine decrease when the engine burns B10 fuel, and the nitrogen oxides (NOx) emission slightly increases, while the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions also decline. Among the detected 12 kinds of PAHs, emission concentrations of 10 kinds of PAHs from the engine with B10 descend. Especially Benzo(a)pyrene equivalent toxicity (BEQ) analysis results show that the BEQ of B10 fuel decreases by 15.2% compared to pure diesel.
Technical Paper

A Composition-Based Model for Particulate Matter Emission of Direct Injection Diesel Engines

2005-09-07
2005-01-3463
In this study, a composition-based particulate matter (PM) model of direct injection diesel engines has been formulated and developed to simulate PM emission. The PM model is based on formation mechanisms of main compositions of PM: soot and soluble organic fraction (SOF). Firstly, two models for soot and SOF emissions are established respectively, then, the two models are integrated into a whole PM model. The soot emission model is given by the difference between a primary formation model and an oxidation model of soot. The soot primary formation model is the Hiroyasu soot formation model, and the Nagle and Strickland-Constable model for the soot oxidation is adopted. The SOF emission model is based on an unburned hydrocarbons (HC) emission model, and the HC model is given by the difference between a HC primary formation model and a HC oxidation model.
X