Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Study of Driver's Driving Concentration Based on Computer Vision Technology

2020-04-14
2020-01-0572
Driving safety is an eternal theme of the transportation industry. In recent years, with the rapid growth of car ownership, traffic accidents have become more frequent, and the harm it brings to human society has become increasingly serious. In this context, car safety assisted driving technology has received widespread attention. As an effective means to reduce traffic accidents and reduce accident losses, it has become the research frontier in the field of traffic engineering and represents the trend of future vehicle development. However, there are still many technical problems that need to be solved. With the continuous development of computer vision technology, face detection technology has become more and more mature, and applications have become more and more extensive. This article will use the face detection technology to detect the driver's face, and then analyze the changes in driver's driving focus.
Technical Paper

Research on Crack Detection Method of Self-Piercing Riveting

2023-04-11
2023-01-0863
Compared with traditional welding, self-piercing riveting technology has unique advantages and is widely used in automobile lightweight technology. The riveting quality of self-piercing riveting is closely related to the safety and durability of automobiles. The detection of riveting quality has gradually become an important part of the automobile manufacturing process. The generation of surface cracks under self-piercing riveting will affect the riveting strength, which in turn affects the riveting quality. Therefore, the detection of riveting external quality is transformed into the detection of riveting surface cracks. The existing artificial vision-based riveting lower surface crack recognition technology is inefficient, subjective and cannot be applied on a large scale. Therefore, this paper will propose a local-overall strategy based on image processing and computer vision.
Technical Paper

Crack Detection and Section Quality Optimization of Self-Piercing Riveting

2023-04-11
2023-01-0938
The use of lightweight materials is one of the important means to reduce the quality of the vehicle, which involves the connection of dissimilar materials, such as the combination of lightweight materials and traditional steel materials. The riveting quality of self-piercing riveting (SPR) technology will directly affect the safety and durability of automobiles. Therefore, in the initial joint development process, the quality of self-piercing riveting should be inspected and classified to meet safety standards. Based on this, this paper divides the self-piercing riveting quality into riveting appearance quality and riveting section quality. Aiming at the appearance quality of riveting, the generation of cracks on the lower surface of riveting will seriously affect the riveting strength. The existing method of identifying cracks on the lower surface of riveting based on artificial vision has strong subjectivity, low efficiency and cannot be applied on a large scale.
Technical Paper

A Crack Detection Method for Self-Piercing Riveting Button Images through Machine Learning

2020-04-14
2020-01-0221
Self-piercing rivet (SPR) joints are a key joining technology for lightweight materials, and they have been widely used in automobile manufacturing. Manual visual crack inspection of SPR joints could be time-consuming and relies on high-level training for engineers to distinguish features subjectively. This paper presents a novel machine learning-based crack detection method for SPR joint button images. Firstly, sub-images are cropped from the button images and preprocessed into three categories (i.e., cracks, edges and smooth regions) as training samples. Then, the Artificial Neural Network (ANN) is chosen as the classification algorithm for sub-images. In the training of ANN, three pattern descriptors are proposed as feature extractors of sub-images, and compared with validation samples. Lastly, a search algorithm is developed to extend the application of the learned model from sub-images into the original button images.
X