Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

An Investigation Into New ABS Control Strategies

2016-04-05
2016-01-1639
An investigation into two new control strategies for the vehicle Anti-lock Braking System (ABS) are made for a possible replacement of current non-optimal slip control methods. This paper applies two techniques in order to maximize the braking force without any wheel locking. The first considers the power dissipated by the brake actuator. This power method does not use slip to construct its reference signal for control. A heuristic approach is taken with this algorithm where one searches for the maximum power dissipated. This can open up easier implementation of regenerative braking concurrently with ABS on an electro-hydraulic braking system. Parameter scheduling is explored in this algorithm. The second algorithm employs the use of perturbation based Extremum Seeking Control (ESC) to provide a reference slip and a Youla controller in a negative feedback loop.
Technical Paper

Design and Comparative Study of Yaw Rate Control Systems with Various Actuators

2011-04-12
2011-01-0952
The vehicle dynamics control systems are traditionally based upon utilizing wheel brakes as actuators. However, there has been recently strong interest in the automotive industry for introduction of other vehicle dynamics actuators, in order to improve the overall vehicle stability, responsiveness, and agility features. This paper considers various actuators such as active rear and central differentials and active front and rear steering, and proposes design of related yaw rate control systems. Different control subsystems such as reference model, feedback and feedforward control, allocation algorithm, and time-varying controller limit are discussed. The designed control systems are verified and compared by computer simulation for double lane change and slalom maneuvers.
Technical Paper

Comparative Analysis of Multiple Powertrain Architectures based on a Novel Optimization Framework

2014-04-01
2014-01-1105
Identifying the most appropriate powertrain technology for a given vehicle class and duty cycle can be beneficial to further drive down on carbon emissions. However, with a myriad of powertrain architectures that are emerging in the industry, such as those in Electric Vehicles and Hybrid Vehicles, it becomes more challenging to carry out comprehensive comparative analyses across different permutations of powertrain topologies. This has motivated the authors to research on improving the method used to compare different types of powertrain architectures, and develop a tool that can be used by practitioners for this purpose. Literature survey has indicated that whilst there have been many comparisons made between different types of powertrains, such analyses were often carried out by comparing only limited types of architectures at a time.
X