Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Small and Lightweight Innovative Obstacle Detection Radar System for the General Aviation: Performances and Integration Aspects

2013-09-17
2013-01-2100
Since 2011, ROD Ltd. and Boggi srl have started to cooperate in the field of airborne platform safety through the development and the integration of an innovative radar system, based on the radar system patented by in 2009 [1]. ROD Ltd. is a startup company, created in 2011, in order to commercialize an innovative Obstacle and Terrain Avoidance Sensor concept (OTAS™). Boggi srl is an EASA DOA (21.J.453) [2] that has developed the capability of designing and certifying aerospace components from small changes to complex systems such as Remotely Piloted Air System (RPAS) or mission avionic. The direct experience of the operators in general aviation has shown that a number of accidents occur because of collisions with obstacles and, especially, but not only, with cables. During the years of 1997-2009, a total of 996 reported aviation accidents/collisions involving wires/power lines occurred in the United States. Of the 996 accidents, 301 involved at least one fatality [3].
Technical Paper

Ground Testing of the ETF Unmanned Airship Technology Demonstrator

2011-10-18
2011-01-2589
This paper deals with the ground testing of the technological demonstrator of the innovative remotely controlled ETF airship1. The testing activities are intended to validate the flight control system of the ETF, which is based on the thrust vectoring technology and represents one of the major innovations of the ETF design, together with the airship architecture. A research team of the Aeronautical and Space Department of the Polytechnic of Turin, in collaboration with Nautilus, a small Italian private company, has been working since a few years on the ETF (Elettra Twin Flyers). This airship is remotely-piloted, with high maneuverability capabilities and good operative features also in adverse atmospheric conditions2. The Nautilus new concept airship features architecture and appropriate command system, which should enable the vehicle to maneuver in forward, backward and sideward flight and hovering with any heading, both in normal and severe wind conditions.
Journal Article

A New Approach for the Estimation of the Aerodynamic Damping Characteristics of the ETF Demonstrator

2011-10-18
2011-01-2649
Nautilus S.p.A. and the Polytechnic of Turin, in cooperation with Blue Engineering, have developed a very versatile product, the ELETTRA Twin Flyers [6] (ETF), which consists in a very innovative remotely-piloted airship equipped with high precision sensors and communication devices. This multipurpose platform is particularly suitable for border and maritime surveillance missions and for telecommunication, both in military and civil area. To assess the actual maneuver capabilities of the airship [14], a prototype of reduced size and complexity has been assembled [16]. Before the flight tests a further assessment on the flight simulator is needed, because the first version of the software is tuned on the full scale prototype. Steady state performance and static stability of the demonstrator have been evaluated with CFD analysis.
Technical Paper

Structural and Aerodynamics Analysis on Different Architectures for the Elettra Twin Flyer Prototype

2009-11-10
2009-01-3128
This paper deals with the design and development of an innovative airship concept which is remotely-controlled and intended to be used for monitoring, surveillance, exploration and reconnaissance missions. Two potential solutions have been analyzed: the first consists of a double-hull configuration, characterized by the presence of a primary support structure connected by appropriated bindings to a couple of twin inflatable hulls. The second architecture is a soap-shaped exoskeleton configuration which features a single inflated section, incorporating two separate elements held internally by a system of ribs. The aim of this study is to analyze and compare the two configurations, to determine the most appropriate solution in terms of performance, cost and maneuvering capabilities
X