Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Valvetrain Friction - Modeling, Analysis and Measurement of a High Performance Engine Valvetrain System

2010-05-05
2010-01-1492
Engine efficiency is one of the key aspects to reduce CO₂ emissions. Lamborghini S.p.A. has focused attention on the engine friction modeling, analysis and measurement to understand and control the phenomena. To reduce friction it is necessary to improve understanding of the behavior of the engine components and to pay attention to detail at every tribological contact. The valve train can make a significant contribution to whole engine friction especially at low engine speed and this is particularly true for a high speed sports car engine. Direct acting valve trains are often used for this type of engine to minimize the moved mass and so enable high speed operation. However the sliding contact between the cam and tappet results in higher friction loss than the roller finger follower valve train used on many modern passenger car engines. In addition, the high maximum engine speed demands a large valve spring force to maintain contact between cam and tappet.
Technical Paper

Modeling of Variable Valve Timing on High Performance Engine using Power-Oriented Graphs Method

2011-09-11
2011-24-0150
Engine efficiency is one of the key aspects to reduce CO2 emissions. In order to improve the emission maintaining high performance capabilities several devices are introduced in the system; variable valve timing technology allows more flexibility for modern engines to meet peak performance, fuel economy and low emissions targets [7] while providing good driveability. This paper describes the Lamborghini continuously-variable cam phaser model using a graphical technique, called Power Oriented Graphs (POG), this uses an energetic approach for representing the physical systems. The generally accepted approach is to calibrate an engine on a dynamometer and to adjust the operation of the engine to meet performance targets.
X