Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Energy Efficiency of Distributed-Drive Articulated Vehicle by Differential Steering

2021-04-06
2021-01-0969
Differential steering mode of distributed-drive articulated vehicle is proposed by using the characteristics of independent in-wheel motor. The compound steering system of articulated vehicle is composed of fully hydraulic steering system and differential steering. Several differential steering modes of articulated vehicle are presented, and the differential steering dynamic model of articulated vehicle is built to investigate the relationship of yaw moment and turning radius. The differential steering control strategy of articulated vehicle is studied while maintaining the vehicle in the stability domain. The energy consumption of articulated vehicle with differential steering is calculated by simulating vehicle single shift lane steering process. The simulation results show that the articulated vehicle with differential steering can reduce the energy consumption of hydraulic steering system up to 3.8%.
Technical Paper

Path Planning Strategy of Distributed-Driven Articulated Vehicle Considering Steering Energy Consumption

2022-03-29
2022-01-0298
As construction vehicles become electrified and more intelligent, some technologies are increasingly being applied in optimal controlling vehicle dynamics and driving behavior. Manned articulated vehicles in underground mine have drawbacks such as high steering energy consumption and harsh working environment for drivers, which can be solved by above techniques. The distributed-drive articulated vehicles (DDAV) can generate the yaw moment by the reasonable allocation of each wheel driving force, which can reduce the energy consumption by assisting the hydraulic steering system in steering. In this paper, the dynamic programming (DP) is used to study the optimal torque distribution while the vehicle following the reference path with minimizing the energy consumption. Firstly, combined with the tentacle algorithm, optimal control inputs and energy consumption of the vehicle were derived from DP under each tentacle.
Technical Paper

Study of Hydraulic Steering Process for Intelligent Autonomous Articulated Vehicle

2018-04-03
2018-01-0133
Intelligent autonomous articulated vehicles (IAAVs), the most important transportations of intelligent mining system, are the future direction of mining industry. Though it could realize the unmanned drive, without supports of hydraulic steering process analyses and vehicle dynamic researches, there are no references for the IAAVs to adjust the steering angle in certain driving error. It still has to check the signal from the angle sensor repeatedly to track the planned path in the working process, which lead to the low control accuracy. In this paper, the theories of hydraulic steering process and vehicle model will be developed for the vehicle intelligent control with the analyses of road and tire characteristics based on the principle of least resistance.
Technical Paper

Trajectory Planning on Autonomous Truck with Dual-Modular Chassis Using Artificial Potential Field and Polynomial

2023-04-11
2023-01-0690
Autonomous truck with modular chassis has the characteristics of high driving flexibility and strong load capacity. It can be equipped with different numbers of modular chassis according to the task requirements. The application of autonomous truck can solve the problems of traffic accidents and shortage of drivers effectively, which is the development trend of trucks in the future. For the collision-free trajectory planning problem of dual-modular chassis autonomous truck, this paper designs a hierarchical local trajectory planner that combines the artificial potential field method with polynomial curve fitting method. This planner plans the center of mass trajectory firstly, and then generates the modular chassis trajectories according to the position relationship between the center of mass and the chassis.
X