Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Influences of Initial DTV on Thermomechnical Coupling in Disc Brake System

2017-09-17
2017-01-2492
In this paper, the initial disc thickness variation (DTV) of a ventilated disc in automotive brake system is modeled as sinusoidal function of the second order. The transient thermomechanical coupling properties of the brake system is simulated using finite element (FE) modeling. The system models and results were verified by a thermomechanical coupling test of a disc brake conducted on a brake dynamometer. By using varied evaluation indexes such as the temperature distribution, the normal stress and the elastic deformation of disc surfaces, the influences of the initial DTV and its direction as well as its amplitude on the thermomechanical coupling characteristics were analyzed.
Technical Paper

Impact of Contact Pressure Distribution on Break Squeal of Drum Brake

2012-09-17
2012-01-1838
Contact pressure distribution is one of the key influence factors and the essential causes of brake squeal. In this study, a drum brake finite element model is established using ABAQUS. The contact pressure distribution is simulated and the brake squeal instability is predicted based on the complex eigenvalue analysis method. Different contact pressure distributions are obtained by changing the structure and material parameters of the drum brake as well as altering the friction coefficient and the brake pressure. Then, the effect of contact pressure distribution on brake squeal is investigated, and the mechanism of the key contributing factors of brake squeal is studied. The innovation of the study is that it correlates squeal properties directly to the contact pressure distribution characteristics, which is considered as the essential influence mechanism of brake squeal.
Technical Paper

NVH Comparative Analysis of 3in1 and 2in1 Electric Drive System Based on Experimental Research

2022-03-29
2022-01-0606
As the key assembly of new energy vehicles, the noise and vibration, and harshness (NVH) performance of integrated electric drive system directly affects the driving quality of new energy vehicles. In this paper, the vibration noise characteristic test of 3in1 electric drive system is carried out in the semi-muffler chamber. In order to compare and analyze the difference between 2in1 and 3in1 electric drive system NVH performance, the power electronics unit (PEU) in the 3in1 system was removed and placed on the ground away from the platform, and vibration noise test was carried out. In order to analyze the difference of NVH performance between 2in1 status and 3in1 status, the PEU in the 3in1 system was removed and placed on the ground far away from the bench, and the NVH test was carried out. The microphone signal at 1m position and the vibration acceleration signal of the key structural surface of the system are measured experimentally.
X