Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Impact of Contact Pressure Distribution on Break Squeal of Drum Brake

2012-09-17
2012-01-1838
Contact pressure distribution is one of the key influence factors and the essential causes of brake squeal. In this study, a drum brake finite element model is established using ABAQUS. The contact pressure distribution is simulated and the brake squeal instability is predicted based on the complex eigenvalue analysis method. Different contact pressure distributions are obtained by changing the structure and material parameters of the drum brake as well as altering the friction coefficient and the brake pressure. Then, the effect of contact pressure distribution on brake squeal is investigated, and the mechanism of the key contributing factors of brake squeal is studied. The innovation of the study is that it correlates squeal properties directly to the contact pressure distribution characteristics, which is considered as the essential influence mechanism of brake squeal.
Journal Article

The Influence of Vacuum Booster Design Parameters on Brake Pedal Feel

2014-09-28
2014-01-2499
Brake pedal feel characteristic is determined by the structural and kinetic parameters of the components of the brake system. As the servo power component of the brake system, vacuum booster has a significant influence on the brake pedal feel. In this paper, a brake system model for brake pedal feel which has a detail vacuum booster mathematical description is established in the software MATLAB/Simulink. The structure gaps, spring preload, friction force and reaction disc characteristics of vacuum booster are considered in this model. A brake pedal feel bench test under different input velocity and vacuum pressure is completed in order to validate the prediction of the model.
X