Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Design and Development of High Performance Diesel Engine Block for High Power Density Engines with an Integrated Approach

2010-10-05
2010-01-1973
This work is a part of program on “Development of High Power Density DI, Diesel Engine to Meet US EPA - Tier III Emission norms for off highway and Genset application purpose. This is a 4 Cylinder, TCIC engine delivering 165 Hp @ 2500 rpm. BMEP at max torque comes to be 18 bar giving max cylinder firing pressure of 160 bar. Engine block is a most vital component which has to serve various functions all together. Also design of block for such a high BMEP levels, demands to give a different design strategy required for development of High Performance Engines. In order to reduce overall production cost, several constraints are imposed on design of new block. Design of block is carried out within several design, assembly and manufacturing constraints such as maintain a specific cylinder centre distance, integral oil cooler in the engine block, re-location of camshaft and FIE positions, incorporation of various accessories viz. steering pump, Air Compressor etc.
Technical Paper

Design and Development of Cylinder Block for High Power Density Diesel Engine using CAE/CFD Tools for a Tractor Engine with Integrated Approach

2013-11-27
2013-01-2753
Engine Block, being the most vital component requires serving various functions all together. Design of block for higher power densities and BMEP levels, needs a complete change in the design strategy compared to the existing design approach. Also, balancing other factors like engine cooling efficiency, blow by targets, weight, and manufacturing cost becomes a huge challenge upfront in designing an engine block. Design of block is carried out within several design, assembly and manufacturing constraints such as to maintain a specific cylinder centre distance, Block NVH, Better cooling jacket, controlled bore deformation and incorporation of various accessories viz. CRDI System, Fuel Filter, Oil Filters, Fuel Injection System, steering pump, Air Compressor etc. This paper portrays the complete perspective and design methodology used during design process. Integration of classical methods, and FE analysis is presented.
Technical Paper

Investigation of Gasket Sealing Behavior of an All-Aluminum High Performance, New Generation Passenger Car Engine under Extreme Engine Operating Conditions

2024-01-16
2024-26-0033
The increasing demand for higher specific power, fuel economy, Operating Costs as well as meeting global emission norms have become the driving factors of today’s product development in the automotive market. Substitution of high-density materials and more precise adjustment of material parameters help in significant weight decrease, but it is accompanied by undesirable cost increase and manufacturing complexity. This becomes a challenge for every automotive engineer to balance the above parameters to make a highly competitive design. This work is a part of the Design and Development of 2.2 L, 4 Cylinder TCIC Diesel Engine for a whole new vehicle platform, concentrated on automotive passenger car operation. This paper explains the selection of a suitable cylinder head gasket technology for a lightweight engine that acts as a sealing interface between the cylinder block and cylinder head.
X