Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Software Defined Radio and Security in the Automotive Domain

2015-04-14
2015-01-0203
Several wireless systems such as Dedicated Short Range Communication (DSRC), cellular, Wi-Fi, Bluetooth, and the Tire Pressure Monitoring System (TPMS) can be found on modern vehicles. In the future, Software Defined Radio (SDR) technology could be integrated into automobiles to increase the efficiency and adaptability of wireless communications systems. SDR is also a powerful tool for designing and testing new communications protocols. However there are also some security considerations associated with SDR. This paper will review some advantages of using SDR technology in the automotive domain as well as potential security issues. The authors are currently conducting research into the use of SDR technology to model wireless systems and investigate security threats in modern vehicular systems.
Technical Paper

Test Methodology to Quantify and Analyze Energy Consumption of Connected and Automated Vehicles

2019-04-02
2019-01-0116
A new generation of vehicle dynamics and powertrain control technologies are being developed to leverage information streams enabled via vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) connectivity [1, 2, 3, 4, 5]. While algorithms that use these connected information streams to enable improvements in energy efficiency are being studied in detail, methodologies to quantify and analyze these improvements on a vehicle have not yet been explored fully. A procedure to test and accurately measure energy-consumption benefits of a connected and automated vehicle (CAV) is presented. The first part of the test methodology enables testing in a controlled environment. A traffic simulator is built to model traffic flow in Fort Worth, Texas with sufficient accuracy. The benefits of a traffic simulator are two-fold: (1) generation of repeatable traffic scenarios and (2) evaluation of the robustness of control algorithms by introducing disturbances.
X