Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Hybrid Combustion Control Strategy for Heavy Duty Diesel Engines Based on the Technologies of Multi-Pulse Injections, Variable Boost Pressure and Retarded Intake Valve Closing Timing

2011-04-12
2011-01-1382
Combustion control strategy for high efficiency and low emissions in a heavy duty (H D) diesel engine was investigated experimentally in a single cylinder test engine with a common rail fuel system, EGR (Exhaust Gas Recirculation) system, boost system and retarded intake valve closing timing actuator. For the operation loads of IMEPg (Gross Indicated Mean Effective Pressure) less than 1.1 MPa the low temperature combustion (LTC) with high rate of EGR was applied. The fuel injection modes of either single injection or multi-pulse injections, boost pressure and retarded intake valve closing timing (RIVCT) were also coupled with the engine operation condition loads for high efficiency and low emissions. A higher boost pressure played an important role in improving fuel efficiency and obtaining ultra-low soot and NOx emissions.
Technical Paper

Exhaust Gas Recirculation, Late Intake Valve Closure and High Compression Ratio for Fuel Economy Improvement in a MPI Gasoline Engine

2014-04-01
2014-01-1197
The effects of exhaust gas recirculation (EGR), late intake valve closure (LIVC) and high compression ratio (HCR) on the performance of a 1.6L multi-point injection (MPI) gasoline engine at 2000rpmwere investigated in this paper. Compared to the baseline engine, The improvement of fuel consumption is about 1.4%∼4.5% by using EGR only because of a reduction of pumping loss(PMEP). Nevertheless deterioration of combustion is introduced at the same time for high specific heat of EGR. The maximum EGR rate introduced in this system is limited by cyclic variations of indicate mean effective pressure (COVIMEP) at low load and fresh charge to achieve enough output power at high load. After combined LIVC and HCR, the improvement of fuel consumption is about 3.5%∼9.6% compared with the baseline engine at the same operation conditions because of significant PMEP reduction, increasing of effective compression ratio (ECR).
X