Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

0W-16 Fuel Economy Gasoline Engine Oil Compatible with Low Speed Pre-Ignition Performance

2017-10-08
2017-01-2346
It has been long established fact that fuel economy is a key driving force of low viscosity gasoline engine oil research and development considered by the original equipment manufacturers (OEMs) and lubricant companies. The development of low viscosity gasoline engine oils should not only focus on fuel economy improvement, but also on the low speed pre-ignition (LSPI) prevention property. In previous LSPI prevention literatures, the necessity of applying Ca/Mg-based detergents system in the engine oil formulations was proposed. In this paper, we adopted a specific Group III base oil containing Ca-salicylate detergent, borated dispersant, Mo-DTC in the formulation and investigated the various effects of Mg-salicylate and Mg-sulfonate on the performance of engine oil. It was found that Mg-sulfonate showed a significant detrimental impact on silicone rubber compatibility while the influence from Mg-salicylate remains acceptable.
Technical Paper

Development of Low Sulfated Ash and Fuel Economy Diesel Engine Oil

2009-06-15
2009-01-1845
A low sulfated ash (S.Ash) DL-1/C2 0W-30 diesel engine oil with improved fuel economy has been developed to meet the PM targets outlined in the Euro 5 emissions standards and to help achieve the voluntary European CO2 target of 140 g/km. The newly developed engine oil is an effective solution to the trilemma (triple probrem) of reliability (high detergency and high anti wear), low S.Ash, and fuel economy, achieving a fuel economy improvement of 2% and reducing CO2 emissions by 3 g/km.
Technical Paper

Development of ILSAC GF-5 0W-20 Fuel Economy Gasoline Engine Oil

2012-09-10
2012-01-1614
We report in this paper our newly developed technology applied to ILSAC GF-5 0W-20 engine oil that offers great fuel economy improvement over GF-4 counterpart, which is a key performance requirement of modern engine oil to reduce CO2 emissions from a vehicle. Our development strategy of the oil consisted of two elements: (1) further friction reduction under mixed and hydrodynamic lubrication conditions considering use of roller rocker arm type valve train system and (2) lowering viscosity at low temperature conditions to improve fuel economy under cold cycles. Use of roller rocker arm type valve train system has been spreading, because of its advantage of reducing mechanical friction. Unlike engine with conventional direct-acting type valve train system, lubrication condition of engine with the roller rocker arm type valve train system has higher contribution of mixed or hydrodynamic lubrication conditions rather than boundary lubrication condition.
Technical Paper

Investigation of Engine Oil Effect on Abnormal Combustion in Turbocharged Direct Injection - Spark Ignition Engines (Part 2)

2013-10-14
2013-01-2569
As one of spark ignition (SI) engine solutions to improve fuel economy while maintaining drivability, concept of combing turbocharging and direct injection (DI) fuel injection system with engine down-sizing has increased its application in the market. Abnormal combustion phenomena referred to as Low Speed Pre-Ignition (LSPI) has been recognized as potential restriction to improve low speed engine torque that contributes fuel economy improvement. As reported in the part 1 [1], the study showed that engine oil composition had significant influence on the frequency of LSPI in both preventive and contributory effects. Further investigation was conducted to evaluate engine oil formulation variables and other factors that may have influences on the LSPI, such as engine oil degradation. Engine test that consisted of 2 phases was designed in order to confirm the correlation between LSPI frequency and engine oil degradation.
Technical Paper

Development of Continuously Variable Transmission Fluid for Fuel Economy

2013-10-14
2013-01-2584
We develop a new metal-belt continuously variable transmission fluid (CVTF) named FE to improve fuel economy and help reduce CO2 emissions. FE is a low-viscosity fluid that reduces friction loss at low temperatures. Low-viscosity fluids generally reduce hardware durability, resulting in reduced metal fatigue life. Therefore, FE is designed for maintaining oil film thickness throughout the life of a vehicle by optimizing the base oil and viscosity modifier. FE also exhibits long-term anti-shudder performance that enables frequent use of controlled-slip torque converter clutches for improving fuel economy, represented by the flex start system, without decreasing torque capacity between the belt and pulley. The key point in the formulation of design is the selection of a suitable friction modifier. A friction modifier is an additive that improves friction properties.
X