Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

An Exploration of Jute-Polyester Composite for Vehicle Head Impact Safety Countermeasures

2018-04-03
2018-01-0844
Natural fiber-reinforced composites are currently gaining increasing attention as potential substitutes to pervasive synthetic fiber-reinforced composites, particularly glass fiber-reinforced plastics (GFRP). The advantages of the former category of composites include (a) being conducive to occupational health and safety during fabrication of parts as well as handling as compared to GFRP, (b) economy especially when compared to carbon fiber-reinforced composites (CFRC), (c) biodegradability of fibers, and (d) aesthetic appeal. Jute fibers are especially relevant in this context as jute fabric has a consistent supply base with reliable mechanical properties. Recent studies have shown that components such as tubes and plates made of jute-polyester (JP) composites can have competitive performance under impact loading when compared with similar GFRP-based structures.
Technical Paper

A Methodology for Prediction of Periprosthetic Injuries in Occupants with TKR Implants in Vehicle Crashes

2016-04-05
2016-01-1529
Periprosthetic fractures refer to the fractures that occur in the vicinity of the implants of joint replacement arthroplasty. Most of the fractures during an automotive frontal collision involve the long bones of the lower limbs (femur and tibia). Since the prevalence of persons living with lower limb joint prostheses is increasing, periprosthetic fractures that occur during vehicular accidents are likely to become a considerable burden on health care systems. It is estimated that approximately 4.0 million adults in the U.S. currently live with Total Knee Replacement (TKR) implants. Therefore, it is essential to study the injury patterns that occur in the long bone of a lower limb containing a total knee prosthesis. The aim of the present study is to develop an advanced finite element model that simulates the possible fracture patterns that are likely during vehicular accidents involving occupants who have knee joint prostheses in situ.
Technical Paper

A Unified CAE Framework for Assessing an IC Engine Design

2015-04-14
2015-01-1664
Despite the considerable advancements made in the applications of CAE for evaluation of an IC engine, an integrated approach to the design of such engines based on thermo-mechanical considerations appears to be lacking. The usage of heterogeneous tools for thermal, mechanical and vibration analysis in the industry decreases the efficiency of the product development process. In an effort to reduce this bottleneck, a unified framework is presented here according to which heat transfer and thermo-mechanical stress analysis of a four-stroke single cylinder diesel engine is carried out in a unified manner with the aid of a multi-physics explicit finite element analysis tool, LS-DYNA, with robust contact interfaces leading to a realistic representation of engine dynamics.
Technical Paper

Performance of Lightweight Materials for Vehicle Interior Trim Subject to Monotonic Loading and Low Velocity Impact

2015-04-14
2015-01-0717
The usage of lightweight materials such as plastics and their derivatives continues to increase in automobiles driven by the urgency for weight reduction. For structural performance, body components such as A-pillar or B-pillar trim, instrument panel, etc. have to meet various requirements including resistance to penetration and energy absorption capability under impact indentation. A range of plain and reinforced thermoplastics and thermosetting plastics has been considered in the present study in the form of plates which are subject to low velocity perforation in a drop-weight impact testing set-up with a rigid cylindrical indenter fitted to a tup. The tested plates are made of polypropylene (PP), nanoclay-reinforced PP of various percentages of nanoclay content, wood-PP composites of different volume fractions of wood fiber, a jute-polyester composite, and a hybrid jute-polyester reinforced with steel.
Technical Paper

A Study on Impact Perforation Resistance of Jute-Polyester Composite Laminates

2014-04-01
2014-01-1055
Natural fiber-based composites such as jute-polyester composites have the potential to be more cost-effective and environment-friendly substitutes for glass fiber-reinforced composites which are commonly found in many applications. In an earlier study (Mache and Deb [1]), jute-polyester composite tubes of circular and square cross-sections were shown to perform competitively under axial impact loading conditions when compared to similar components made of bidirectional E-glass fiber mats and thermo-setting polyester resin. For jute-reinforced plastic panels to be feasible solutions for automotive interior trim panels, laminates made of such materials should have adequate perforation resistance. In the current study, a systematic characterization of jute-polyester and glass-polyester composite laminates made by compression molding is at first carried out under quasi-static tensile, compressive and flexural loading conditions.
Journal Article

Exploration of Vehicle Body Countermeasures Subjected to High Energy Loading

2023-04-11
2023-01-0003
Enhanced protection against high speed crashes requires more aggressive passive safety countermeasures as compared to what are provided in vehicle structures today. Apart from such collision-related scenarios, high energy explosions, accidentally caused or otherwise, require superior energy-absorbing capability of vehicle body subsystems. A case in point is a passenger vehicle subjected to an underbody blast emanating shock wave energy of military standards. In the current study, assessment of the behavior of a “hollow” countermeasure in the form of a depressed steel false floor panel attached with spot-welds along flanges to a typical predominantly flat floor panel of a car is initially carried out with an explicit LS-DYNA solver. This is followed up with the evaluation of PU (polyurethane) foam-filled and liquid-filled false floor countermeasures. In all cases, a charge is detonated under the false floor subjecting it to a high-energy shock pressure loading.
Technical Paper

A Novel Approach for Mechanical Characterization of Angle-Ply Composite Laminates

2024-04-09
2024-01-2435
​Composites made of continuous fibers generally have higher strength-to-weight ratios in fiber directions as compared to those made of discontinuous fibers. However, the latter tend to display quasi-isotropic properties which can be of advantage when directions of mechanical loading can vary. For many real-world applications such as robust design of vehicle body components for crashworthiness, impact loads are stochastic in nature both in terms of magnitude and direction. Hence, in order to realize the true potential of laminated composites with continuous fibers, instead of orthotropic laminates which are most common due to the ease of design and manufacturing, angle-ply laminates are necessary.
X