Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Efficient Approximate Methods for Predicting Behaviors of Steel Hat Sections Under Axial Impact Loading

2010-04-12
2010-01-1015
Hat sections made of steel are frequently encountered in automotive body structural components such as front rails. These components can absorb significant amount of impact energy during collisions thereby protecting occupants of vehicles from severe injury. In the initial phase of vehicle design, it will be prudent to incorporate the sectional details of such a component based on an engineering target such as peak load, mean load, energy absorption, or total crush, or a combination of these parameters. Such a goal can be accomplished if efficient and reliable data-based models are available for predicting the performance of a section of given geometry as alternatives to time-consuming and detailed engineering analysis typically based on the explicit finite element method.
Technical Paper

Headform Impact Safety Design Through Simulation and Testing

2003-03-03
2003-01-1386
Crash safety is a changing area in which safety requirements are updated or added from time to time. A relatively recent federal safety requirement is the amended FMVSS 201 rule for upper interior head impact. The automotive crash safety engineer faces many challenges in designing for this safety criterion. In the current study, it is shown how finite element-based simulation can be used as an effective tool in the design of lightweight headform impact protection countermeasures, supplemented with selective laboratory testing. Additionally, judicious employment of component finite element models and laboratory tests before a new countermeasure concept is deployed in a full vehicle environment leads to robustness and efficiency in product development.
Technical Paper

Effect of Strain Rate on Mechanical Responses of Jute-Polyester Composites

2017-03-28
2017-01-1467
There has been a keen interest in recent times on implementation of lightweight materials in vehicles to bring down the unladen weight of a vehicle for enhancing fuel efficiency. Fiber-reinforced composites comprise a class of such materials. As sustainability is also a preoccupation of current product development engineers including vehicle designers, bio-composites based on natural fibers are receiving a special attention. Keeping these motivations of lower effective density, environment friendliness and occupational safety in mind, woven jute fabric based composites have been recently studied as potential alternatives to glass fiber composites for structural applications in automobiles. In the past, mechanical characterization of jute-polyester composites were restricted to obtaining their stress-strain behaviors under quasi-static conditions.
Technical Paper

Active Yaw Control of a Vehicle using a Fuzzy Logic Algorithm

2012-04-16
2012-01-0229
Yaw rate of a vehicle is highly influenced by the lateral forces generated at the tire contact patch to attain the desired lateral acceleration, and/or by external disturbances resulting from factors such as crosswinds, flat tire or, split-μ braking. The presence of the latter and the insufficiency of the former may lead to undesired yaw motion of a vehicle. This paper proposes a steer-by-wire system based on fuzzy logic as yaw-stability controller for a four-wheeled road vehicle with active front steering. The dynamics governing the yaw behavior of the vehicle has been modeled in MATLAB/Simulink. The fuzzy controller receives the yaw rate error of the vehicle and the steering signal given by the driver as inputs and generates an additional steering angle as output which provides the corrective yaw moment.
Technical Paper

A Unified CAE Framework for Assessing an IC Engine Design

2015-04-14
2015-01-1664
Despite the considerable advancements made in the applications of CAE for evaluation of an IC engine, an integrated approach to the design of such engines based on thermo-mechanical considerations appears to be lacking. The usage of heterogeneous tools for thermal, mechanical and vibration analysis in the industry decreases the efficiency of the product development process. In an effort to reduce this bottleneck, a unified framework is presented here according to which heat transfer and thermo-mechanical stress analysis of a four-stroke single cylinder diesel engine is carried out in a unified manner with the aid of a multi-physics explicit finite element analysis tool, LS-DYNA, with robust contact interfaces leading to a realistic representation of engine dynamics.
X