Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

A Comparison of the Behaviors of Steel and GFRP Hat-Section Components under Axial Quasi-Static and Impact Loading

2015-04-14
2015-01-1482
Hat-sections, single and double, made of steel are frequently encountered in automotive body structural components. These components play a significant role in terms of impact energy absorption during vehicle crashes thereby protecting occupants of vehicles from severe injury. However, with the need for higher fuel economy and for compliance to stringent emission norms, auto manufacturers are looking for means to continually reduce vehicle body weight either by employing lighter materials like aluminum and fiber-reinforced plastics, or by using higher strength steel with reduced gages, or by combinations of these approaches. Unlike steel hat-sections which have been extensively reported in published literature, the axial crushing behavior of hat-sections made of fiber-reinforced composites may not have been adequately probed.
Journal Article

An Exploration of Jute-Polyester Composite for Vehicle Head Impact Safety Countermeasures

2018-04-03
2018-01-0844
Natural fiber-reinforced composites are currently gaining increasing attention as potential substitutes to pervasive synthetic fiber-reinforced composites, particularly glass fiber-reinforced plastics (GFRP). The advantages of the former category of composites include (a) being conducive to occupational health and safety during fabrication of parts as well as handling as compared to GFRP, (b) economy especially when compared to carbon fiber-reinforced composites (CFRC), (c) biodegradability of fibers, and (d) aesthetic appeal. Jute fibers are especially relevant in this context as jute fabric has a consistent supply base with reliable mechanical properties. Recent studies have shown that components such as tubes and plates made of jute-polyester (JP) composites can have competitive performance under impact loading when compared with similar GFRP-based structures.
Technical Paper

Effect of Strain Rate on Mechanical Responses of Jute-Polyester Composites

2017-03-28
2017-01-1467
There has been a keen interest in recent times on implementation of lightweight materials in vehicles to bring down the unladen weight of a vehicle for enhancing fuel efficiency. Fiber-reinforced composites comprise a class of such materials. As sustainability is also a preoccupation of current product development engineers including vehicle designers, bio-composites based on natural fibers are receiving a special attention. Keeping these motivations of lower effective density, environment friendliness and occupational safety in mind, woven jute fabric based composites have been recently studied as potential alternatives to glass fiber composites for structural applications in automobiles. In the past, mechanical characterization of jute-polyester composites were restricted to obtaining their stress-strain behaviors under quasi-static conditions.
Technical Paper

A Comparative Study on the Axial Impact Performance of Jute and Glass Fiber-Based Composite Tubes

2013-04-08
2013-01-1178
This paper focuses on the energy absorbing characteristics and progressive deformation behavior of woven jute-polyester composite cylindrical tubes subjected to an axial impact load. In this study, the impact energy absorption characteristics and crushing mechanisms of composite tubes of different thicknesses and number of plies are investigated. To start with, coupon specimens are made from laminates of jute and glass fiber-based polyester composites. These are then tested in a UTM for mechanical characterization of the composites under tensile and compressive loading conditions. Experiments are then conducted in a drop-weight impact testing device to investigate crash performance characteristics such as mean crush load, absorbed energy and specific energy absorption (SEA) of woven jute-polyester composite cylindrical tubes.
Technical Paper

Energy-Absorption Behaviors of Glass Fiber Reinforced Plastic (GFRP) Plates with Hemispherical/Corrugated Force-Multipliers

2015-04-14
2015-01-0560
In the present study, the behavior of hemispherical glass fiber-reinforced plastic (GFRP) energy-absorbers under applied transverse load has been investigated experimentally and numerically. A thermosetting general purpose polyester resin, along with bi-directionally woven E-glass fiber mats, has been used for the fabrication of the test specimens. Previously a limited number of studies were reported for hemispherical features made of composite laminates with fabrics based on randomly oriented chopped glass fibers. A motivation behind the current study is that woven fabric mats with continuous bi-directional strands can be considered as more reliable in terms of consistency of properties when compared with chopped strand mats. Additionally, the current concept of dome-shaped composite entities has been explored for vehicle safety applications, which has not been done earlier.
Technical Paper

A Study on Impact Perforation Resistance of Jute-Polyester Composite Laminates

2014-04-01
2014-01-1055
Natural fiber-based composites such as jute-polyester composites have the potential to be more cost-effective and environment-friendly substitutes for glass fiber-reinforced composites which are commonly found in many applications. In an earlier study (Mache and Deb [1]), jute-polyester composite tubes of circular and square cross-sections were shown to perform competitively under axial impact loading conditions when compared to similar components made of bidirectional E-glass fiber mats and thermo-setting polyester resin. For jute-reinforced plastic panels to be feasible solutions for automotive interior trim panels, laminates made of such materials should have adequate perforation resistance. In the current study, a systematic characterization of jute-polyester and glass-polyester composite laminates made by compression molding is at first carried out under quasi-static tensile, compressive and flexural loading conditions.
X