Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Vibro-Acoustic Sensitivity Analysis of Automotive Engine Mounts for NVH Refinement

2011-04-12
2011-01-0494
Engine noise is a major source of noise inside the vehicle compartment. Recently, the quietness of the occupant cabin has become an important dimension to the quality of product. OEMs are finding it challenging to meet the customer expectations for “Powerful yet quiet” attribute. Several focused studies have been made to reduce the under hood component noise in automobiles. This paper summarizes the optimization of the vibro-acoustic sensitivity (VAS) of the engine mounts of a small car engine. The contribution of each engine mount on the structure-borne noise transfer inside the cabin is the prime focus of this study. In the current analysis, the body side and engine side mounting bracket stiffness analyses are carried out to reduce the vibro-acoustic transfer. Experimental methods like conventional FRF, on-road data acquisition and physical prototyping have been used.
Technical Paper

Vehicular Cabin Noise Source Identification and Optimization Using Beamforming and Acoustical Holography

2014-04-01
2014-01-0004
The automobile market is witnessing a different trend altogether - the trend of shifting preference from powerful to fuel efficient machines. Certain factors like growing prices of fuel, struggling global economy, environmental sensitiveness and affordability have pushed the focus on smaller, efficient and cleaner automobiles. To meet such requirements, the automobile manufacturers, are going stringent on vehicle weights. Using electric and hybrid power-plants are other options to meet higher fuel efficiency and emission requirements but significant cost of these technologies have kept their growth restricted to only few makers and to only few regions of the globe. Optimizing the vehicle weight is a more attractive option for makers as it promises lesser time to market, is low on investment and allows use of existing platforms.
X