Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Computational Fluid Dynamics Study of Gaseous Ammonia Mixing in an Exhaust Pipe Using Static Mixers

2017-03-28
2017-01-1018
Ever growing traffic has a detrimental effect on health and environment. In response to climate warming and health concerns, governments worldwide enforce more stringent emission standards. NOx emissions limits are some of the most challenging to meet using fuel-efficient lean-burn engines. The Selective Catalytic Reduction (SCR) is one consolidated NOx after-treatment technique using urea water solution (UWS) injection upstream of the catalytic converter. A recent development of SCR, using gaseous ammonia injection, reduces wall deposit formation and improves the cold-start efficiency. The mixing of gaseous ammonia with the exhaust gases is one of the key challenges that need to be overcome, as the effectiveness of the system is strongly dependent on the mixture uniformity at the inlet of the SCR catalyst.
Journal Article

The Benefits of Diesel Exhaust Fluid (DEF) Additivation on Urea-Derived Deposits Formation in a Close-Coupled Diesel SCR on Filter Exhaust Line

2017-10-08
2017-01-2370
Diesel Exhaust Fluid (DEF) like Adblue® is a urea/water solution injected upstream from the SCR catalyst. Urea decomposes into ammonia (NH3) which acts as reducing agent in the de-NOx reaction process. However, incomplete decomposition of urea can lead to unwanted deposits formation, thereby resulting into backpressure increase, loss of NOx reduction efficiency, and durability issues. The phenomenon is aggravated at low temperatures and can lead to restriction or stop of DEF injection below certain exhaust temperatures. This paper focuses on the influence of the additivation of DEF on deposits formation in a passenger car close-coupled SCR on filter Diesel exhaust line installed in a laboratory flow bench test. The behavior of two different additivated DEF was compared to Adblue® in terms of deposits formation on the mixer and SCRF canning at different temperatures comprised between 240°C and 165°C, and different air flows.
X