Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Computational Fluid Dynamics Study of Gaseous Ammonia Mixing in an Exhaust Pipe Using Static Mixers

2017-03-28
2017-01-1018
Ever growing traffic has a detrimental effect on health and environment. In response to climate warming and health concerns, governments worldwide enforce more stringent emission standards. NOx emissions limits are some of the most challenging to meet using fuel-efficient lean-burn engines. The Selective Catalytic Reduction (SCR) is one consolidated NOx after-treatment technique using urea water solution (UWS) injection upstream of the catalytic converter. A recent development of SCR, using gaseous ammonia injection, reduces wall deposit formation and improves the cold-start efficiency. The mixing of gaseous ammonia with the exhaust gases is one of the key challenges that need to be overcome, as the effectiveness of the system is strongly dependent on the mixture uniformity at the inlet of the SCR catalyst.
Journal Article

The Benefits of Diesel Exhaust Fluid (DEF) Additivation on Urea-Derived Deposits Formation in a Close-Coupled Diesel SCR on Filter Exhaust Line

2017-10-08
2017-01-2370
Diesel Exhaust Fluid (DEF) like Adblue® is a urea/water solution injected upstream from the SCR catalyst. Urea decomposes into ammonia (NH3) which acts as reducing agent in the de-NOx reaction process. However, incomplete decomposition of urea can lead to unwanted deposits formation, thereby resulting into backpressure increase, loss of NOx reduction efficiency, and durability issues. The phenomenon is aggravated at low temperatures and can lead to restriction or stop of DEF injection below certain exhaust temperatures. This paper focuses on the influence of the additivation of DEF on deposits formation in a passenger car close-coupled SCR on filter Diesel exhaust line installed in a laboratory flow bench test. The behavior of two different additivated DEF was compared to Adblue® in terms of deposits formation on the mixer and SCRF canning at different temperatures comprised between 240°C and 165°C, and different air flows.
Technical Paper

Experimental Investigation of Novel Ammonia Mixer Designs for SCR Systems

2018-04-03
2018-01-0343
Meeting Euro 6d NOx emission regulations lower than 80 mg/km for light duty diesel (60 mg/km gasoline) vehicles remains a challenge, especially during cold-start tests at which the selective catalyst reduction (SCR) system does not work because of low exhaust gas temperatures (light-off temperature around 200 °C). While several exhaust aftertreatment system (EATS) designs are suggested in literature, solutions with gaseous ammonia injections seem to be an efficient and cost-effective way to enhance the NOx abatement at low temperature. Compared to standard SCR systems using urea water solution (UWS) injection, gaseous NH3 systems allow an earlier injection, prevent deposit formation and increase the NH3 content density. However non-uniform ammonia mixture distribution upstream of the SCR catalyst remains an issue. These exhaust gas/ NH3 inhomogeneities lead to a non-optimal NOx reduction performance, resulting in higher than expected NOx emissions and/or ammonia slip.
Technical Paper

Experimental Characterization of SCR DeNOx-Systems: Visualization of Urea-Water-Solution and Exhaust Gas Mixture

2014-04-01
2014-01-1524
The selective catalytic reduction (SCR) based on urea water solution (UWS) is an effective way to reduce nitrogen oxides (NOx) emitted by engines. The high potential offered by this solution makes it a promising way to meet the future stringent exhaust gas standards (Euro6 and Tier2 Bin5). UWS is injected into the exhaust upstream of an SCR catalyst. The catalyst works efficiently and durably if the spray is completely vaporized and thoroughly mixed with the exhaust gases before entering. Ensuring complete vaporization and optimum mixture distribution in the exhaust line is challenging, especially for compact exhaust lines. Numerous parameters affect the degree of mixing: urea injection pressure and spray angle, internal flow field (fluid dynamics), injector location …. In order to quantify the mixture quality (vaporization, homogeneity) upstream of the SCR catalyst, it is proposed to employ non intrusive optical diagnostics techniques such as laser induced fluorescence (LIF).
X