Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

An Integrated Design Method for Articulated Heavy Vehicles with Active Trailer Steering Systems

2010-04-12
2010-01-0092
This paper presents an integrated design method for active trailer steering (ATS) systems of articulated heavy vehicles (AHVs). Of all contradictory design goals of AHVs, two of them, i.e. path-following at low speeds and lateral stability at high speeds, may be the most fundamental and important, which have been bothering vehicle designers and researchers. To tackle this problem, a new design synthesis approach is proposed: with design optimization techniques, the active design variables of ATS systems and passive design variables of trailers can be optimized simultaneously; the ATS controller derived from this approach has two operational modes, one for improving lateral stability at high speeds and the other for enhancing path-following at low speeds. To demonstrate the effectiveness of the proposed approach, it is applied to the design of an ATS system for an AHV with a tractor and a full trailer.
Technical Paper

An Optimal Preview Controller for Active Trailer Steering Systems of Articulated Heavy Vehicles

2011-04-12
2011-01-0983
An optimal preview controller is designed for active trailer steering (ATS) systems to improve high-speed stability of articulated heavy vehicles (AHVs). AHVs' unstable motion modes, including jack-knifing and rollover, are the leading course of highway accidents. To prevent these unstable motion modes, the optimal controller, namely the compound lateral position deviation preview (CLPDP) controller, is proposed to control the steering of the front and rear axle wheels of the trailing unit of a truck/full-trailer combination. The corrective steering angle of the trailer front axle wheels is determined using the preview information of the lateral position deviation of the trajectory of the axle center from that of the truck front axle center. In turn, the steering angle of the trailer rear axle wheels is calculated considering the lateral position deviation of the trajectory of the axle center from that of the trailer front axle.
Technical Paper

A Comparative Study of Active Control Strategies for Improving Lateral Stability of Car-Trailer Systems

2011-04-12
2011-01-0959
This paper examines the performance of different active control strategies for improving lateral stability of car-trailer systems using numerical simulations. For car-trailer systems, three typical unstable motion modes, including trailer swing, jack-knifing and roll-over, have been identified. These unstable motion modes represent potentially hazardous situations. The effects of passive mechanical vehicle parameters on the stability of car-trailer systems have been well addressed. For a given car-trailer system, some of these passive parameters, e.g., the center of gravity of the trailer, are greatly varied under different operating conditions. Thus, lateral stability cannot be guaranteed by selecting a specific passive parameter set. To address this problem, various active control techniques have been proposed to improve handling and stability of car-trailer systems. Feasible control methods involve active trailer steering control (ATSC) and active trailer braking (ATB).
X