Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Aerodynamics of Landing Maneuvering of an Unmanned Aerial Vehicle in Close Proximity to a Ground Vehicle

2023-04-11
2023-01-0118
Autonomous takeoff and landing maneuvers of an unmanned aerial vehicle (UAV) from/on a moving ground vehicle (GV) have been an area of active research for the past several years. For military missions requiring repeated flight operations of the UAV, precise landing ability is important for autonomous docking into a recharging station, since such stations are often mounted on a ground vehicle. The development of precise and efficient control algorithms for this autonomous maneuvering has two key challenges; one is related to flight aerodynamics and the other is related to a precise detection of the landing zone. The aerodynamic challenges include understanding the complex interaction of the flows over the UAV and GV, potential ground effects at the proximity of the landing surface, and the impact of the variations in the surrounding wind flow and ambient conditions.
Technical Paper

The Influence of Cooling Air-Path Restrictions on Fuel Consumption of a Series Hybrid Electric Off-Road Tracked Vehicle

2023-10-31
2023-01-1611
Electrification of off-road vehicle powertrains can increase mobility, improve energy efficiency, and enable new utility by providing high amounts of electrical power for auxiliary devices. These vehicles often operate in extreme temperature conditions at low ground speeds and high power levels while also having significant cooling airpath restrictions. The restrictions are a consequence of having grilles and/or louvers in the airpath to prevent damage from the operating environment. Moreover, the maximum operating temperatures for high voltage electrical components, like batteries, motors, and power-electronics, can be significantly lower than those of the internal combustion engine. Rejecting heat at a lower temperature gradient requires higher flow rates of air for effective heat exchange to the operating environment at extreme temperature conditions.
Journal Article

Thermodynamic Modeling of Military Relevant Diesel Engines with 1-D Finite Element Piston Temperature Estimation

2023-04-11
2023-01-0103
In military applications, diesel engines are required to achieve high power outputs and therefore must operate at high loads. This high load operation leads to high piston component temperatures and heat rejection rates limiting the packaged power density of the powertrain. To help predict and understand these constraints, as well as their effects on performance, a thermodynamic engine model coupled to a finite element heat conduction solver is proposed and validated in this work. The finite element solver is used to calculate crank angle resolved, spatially averaged piston temperatures from in-cylinder heat transfer calculations. The calculated piston temperatures refine the heat transfer predictions as well requiring iteration between the thermodynamic model and finite element solver.
X