Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Fire Suppression Modeling & Simulation Framework for Ground Vehicles

2017-03-28
2017-01-1351
The US Army Tank Automotive Research, Development and Engineering Center (TARDEC) has developed a unique physics based modeling & simulation (M&S) capability using Computational Fluid Dynamics (CFD) techniques to optimize automatic fire extinguishing system (AFES) designs and complement vehicle testing for both occupied and unoccupied spaces of military ground vehicles. The modeling techniques developed are based on reduced global kinetics for computational efficiency and are applicable to fire suppressants that are being used in Army vehicles namely, bromotrifluoromethane (Halon 1301), heptafluoropropane (HFC-227ea, trade name FM200), sodium-bicarbonate (SBC) powder, water + potassium acetate mixture, and pentafluoroethane (HFC-125, trade name, FE-25). These CFD simulations are performed using High Performance Computers (HPC) that enable the Army to assess AFES designs in a virtual world at far less cost than physical-fire tests.
Journal Article

Steady and Transient CFD Approach for Port Optimization

2008-04-14
2008-01-1430
The intake and exhaust port design plays a substantial role in performance of combustion systems. The port design determines the volumetric efficiency and in-cylinder charge motion of the spark-ignited engine which influences the thermodynamic properties directly related to the power output, emissions, fuel consumption and NVH properties. Thus intake port has to be appropriately designed to fulfill the required charge motion and high flow performance. While turbulence intensity and air-mixture quality affect dilution tolerance and fuel economy as a result, breathing ability affects wide open throttle performance. Traditional approaches require experimental techniques to reach a target balance between the charge motion and breathing capacity. Such techniques do not necessarily result in an optimized solution.
Technical Paper

Torque Converter CFD Engineering Part II: Performance Improvement through Core Leakage Flow and Cavitation Control

2002-03-04
2002-01-0884
The performance of a large-volume production torque converter is slightly different from those of development prototype due to the core leakage flow. The sealing gap between the stator crown and pump or turbine core of the production converter is usually larger than that of prototypes because of fabrication method and tolerances. In this work, the core leakage flow of torque converter was investigated using CFD. The core region was modeled and coupled together with other three major components of a converter. Studies show that for a particular converter the core leakage flow could result in a 3.6% stall torque ratio reduction and a 2% peak efficiency decrease. The effects of sealing gap dimensions were also studied. Computational investigations in this work indicated that the variation of input K factor with input torque level observed in dyno tests is due to the cavitation in the torque converter.
Technical Paper

Torque Converter CFD Engineering Part I: Torque Ratio and K Factor Improvement Through Stator Modifications

2002-03-04
2002-01-0883
To improve vehicle launch feeling, the powertrain torque output needs to be largely increased. Compared with modifications to engine, transmission, and axle, one of the most inexpensive ways of achieving this goal is to modify the torque converter to get a higher stall torque ratio. In other applications, in order to lower engine speed for better fuel economy, and to match with a higher output engine, a converter with higher torque capacity (lower K factor) is also often desired. In some case of small-volume production, the torque converter modifications are limited to the stator only in order to reduce the manufacturing cost. In the present study, the engineering CFD simulations were used to develop new stators for stall torque ratio and K factor improvement. The flow fields of both baseline and modified torque converters were simulated. The overall performances of the converter were calculated from the flow field data, and correlated with the dyno test data.
Technical Paper

Surface Contamination Simulation for a Military Ground Vehicle

2019-04-02
2019-01-1075
Vehicle surface contamination can degrade not only soldier vision but also the effectiveness of camera and sensor systems mounted externally on the vehicle for autonomy and situational awareness. In order to control vehicle surface contamination, a better understanding of dust particle generation, transport and accumulation is necessary. The focus of the present work is simulation of vehicle surface contamination on the rear part of the vehicle due to the interaction of the combat vehicle track with the ground and dust in the surrounding ambient atmosphere. A notional tracked military vehicle is used for the Computational fluid dynamics (CFD) simulation. A CFD methodology with one-way-coupled Lagrangian particle modeling is used. The simulation is initially run with only air flow to solve the air pressure, velocity, and turbulence quantities in a steady state condition.
Journal Article

Aerodynamics of Landing Maneuvering of an Unmanned Aerial Vehicle in Close Proximity to a Ground Vehicle

2023-04-11
2023-01-0118
Autonomous takeoff and landing maneuvers of an unmanned aerial vehicle (UAV) from/on a moving ground vehicle (GV) have been an area of active research for the past several years. For military missions requiring repeated flight operations of the UAV, precise landing ability is important for autonomous docking into a recharging station, since such stations are often mounted on a ground vehicle. The development of precise and efficient control algorithms for this autonomous maneuvering has two key challenges; one is related to flight aerodynamics and the other is related to a precise detection of the landing zone. The aerodynamic challenges include understanding the complex interaction of the flows over the UAV and GV, potential ground effects at the proximity of the landing surface, and the impact of the variations in the surrounding wind flow and ambient conditions.
Journal Article

Evaluation of High-Temperature Martensitic Steels for Heavy-Duty Diesel Piston Applications

2022-03-29
2022-01-0599
Five different commercially available high-temperature martensitic steels were evaluated for use in a heavy-duty diesel engine piston application and compared to existing piston alloys 4140 and microalloyed steel 38MnSiVS5 (MAS). Finite element analyses (FEA) were performed to predict the temperature and stress distributions for severe engine operating conditions of interest, and thus aid in the selection of the candidate steels. Complementary material testing was conducted to evaluate the properties relevant to the material performance in a piston. The elevated temperature strength, strength evolution during thermal aging, and thermal property data were used as inputs into the FEA piston models. Additionally, the long-term oxidation performance was assessed relative to the predicted maximum operating temperature for each material using coupon samples in a controlled-atmosphere cyclic-oxidation test rig.
Technical Paper

Numerical Evaluation of Injection Parameters on Transient Heat Flux and Temperature Distribution of a Heavy-Duty Diesel Engine Piston

2024-04-09
2024-01-2688
A major concern for a high-power density, heavy-duty engine is the durability of its components, which are subjected to high thermal loads from combustion. The thermal loads from combustion are unsteady and exhibit strong spatial gradients. Experimental techniques to characterize these thermal loads at high load conditions on a moving component such as the piston are challenging and expensive due to mechanical limitations. High performance computing has improved the capability of numerical techniques to predict these thermal loads with considerable accuracy. High-fidelity simulation techniques such as three-dimensional computational fluid dynamics and finite element thermal analysis were coupled offline and iterated by exchanging boundary conditions to predict the crank angle-resolved convective heat flux and surface temperature distribution on the piston of a heavy-duty diesel engine.
Journal Article

Thermodynamic Modeling of Military Relevant Diesel Engines with 1-D Finite Element Piston Temperature Estimation

2023-04-11
2023-01-0103
In military applications, diesel engines are required to achieve high power outputs and therefore must operate at high loads. This high load operation leads to high piston component temperatures and heat rejection rates limiting the packaged power density of the powertrain. To help predict and understand these constraints, as well as their effects on performance, a thermodynamic engine model coupled to a finite element heat conduction solver is proposed and validated in this work. The finite element solver is used to calculate crank angle resolved, spatially averaged piston temperatures from in-cylinder heat transfer calculations. The calculated piston temperatures refine the heat transfer predictions as well requiring iteration between the thermodynamic model and finite element solver.
X