Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

An Analysis of a Lithium-ion Battery System with Indirect Air Cooling and Warm-Up

2011-09-13
2011-01-2249
Ideal operation temperatures for Li-ion batteries fall in a narrow range from 20°C to 40°C. If the cell operation temperatures are too high, active materials in the cells may become thermally unstable. If the temperatures are too low, the resistance to lithium-ion transport in the cells may become very high, limiting the electrochemical reactions. Good battery thermal management is crucial to both the battery performance and life. Characteristics of various battery thermal management systems are reviewed. Analyses show that the advantages of direct and indirect air cooling systems are their simplicity and capability of cooling the cells in a battery pack at ambient temperatures up to 40°C. However, the disadvantages are their poor control of the cell-to-cell differential temperatures in the pack and their capability to dissipate high cell generations.
Journal Article

Thermal Analysis of a Li-ion Battery System with Indirect Liquid Cooling Using Finite Element Analysis Approach

2012-04-16
2012-01-0331
The performance and life of Li-ion battery packs for electric vehicle (EV), hybrid electrical vehicle (HEV), and plug-in hybrid electrical vehicle (PHEV) applications are influenced significantly by battery operation temperatures. Thermal management of a battery pack is one of the main factors to be considered in the pack design, especially for those with indirect air or indirect liquid cooling since the cooling medium is not in contact with the battery cells. In this paper, thermal behavior of Li-ion pouch cells in a battery system for PHEV applications is studied. The battery system is cooled indirectly with liquid through aluminum cooling fins in contact with each cell and a liquid cooled cold plate for each module in the battery pack. The aluminum cooling fins function as a thermal bridge between the cells and the cold plate. Cell temperature distributions are simulated using a finite element analysis approach under cell utilizations corresponding to PHEV applications.
X