Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Stochastic Reactor Model Aiding Experimental HCCI Engine Operating on Surrogate Bio-Producer Gas

2016-10-17
2016-01-2296
A stochastic reactor model has been employed to aid the development of a new highly efficient and compact opposing piston, barrel engine. It is desirable to utilize the engine across a broad range of applications and the designers have identified the use of low calorific value fuels derived from low grade biomass gasification in HCCI mode as one possible end use. Biogas from solid fuel gasification can vary largely in composition of main components depending on feedstock and gasification method. Hence, in order to address the engines applicability to run on biogas in general terms, identifying a simple two-component surrogate fuel which can be varied under testing is of great importance. A stochastic reactor model in the form of a commercially available software, LOGEsoft, has been used to examine suitable surrogate gas mixtures which could be used to best simulate the biogas during initial engine testing and development.
Technical Paper

Enhanced Combustion by Photo Ignition of Carbon Nanotubes in a Constant Volume Chamber

2023-04-11
2023-01-0406
Using ammonia as fuel in retrofitted large marine vessels or heavy-duty vehicles has the potential to reduce CO2 emissions. However, ammonia is hard to burn in an internal combustion engine (ICE) due to its poor combustion properties, i.e. having high autoignition temperatures and low flame speeds. This results in the need for a highly reactive secondary fuel or an improved ignition system for achieving complete and stable combustion. This study investigates a radical technology for the ignition of a fuel-air mixture using carbon nanotubes. The technology consists of injecting a mixture of multi-walled carbon nanotubes and ferrocene (CNT-Fe) into a fuel-air mixture and subjecting the particles to a bright flash of light. Due to the photochemical properties of CNT-Fe particles, the absorbed light initiates ignition.
X