Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Combustion Optimization and In-Cylinder NOx and PM Reduction by Using EGR and Split Injection Techniques

2019-11-21
2019-28-2560
Nowadays, the major most challenge in the diesel engine is the oxides of nitrogen (NOx) and particulate matter (PM) trade-off, with minimal reduction in Power and BSFC. Modern day engines also rely on expensive after-treatment devices, which may decrease the performance and increase the BSFC. In this paper, combustion optimization and in-cylinder emission control by introducing the Split injection technique along with EGR is carried out by 1-D (GT- POWER) simulation. Experiments were conducted on a 3.5 kW Single-cylinder naturally aspirated CRDI engine at the different load conditions. The Simulation model incorporates detailed pressure (Burn rate) analysis for different cases and various aspects of ignition delay, premixed and mixing controlled combustion rate, the injection rate affecting oxides of nitrogen and particulate matter.
Technical Paper

Quality Biodiesel Production and Engine Performance & Emission Evaluation Using Blends of Castor Biodiesel

2021-03-08
2021-28-0001
Automotive engine emissions are disturbing the ecological system and it has caused major impact on flora & fauna and environment. The major motive force behind this research is to find the alter-native fuel for the future sustainable mobility and less dependence on the fossil fuels. Biodiesel fuel produced from non-edible oil (like castor) could be used to replace a considerable portion of the conventional fuel consumed worldwide. Castor oil is selected for this study considering a fact that India is a major contributor in global castor oil seed production and also it, being a non-edible oil, avoids the cold-war between food vs fuel. The present study has been conducted in three phases.
Technical Paper

Development of Diesel Particulate NOx Reduction DPNR System for Simultaneous Reduction of PM and NOx in Diesel Engines

2019-11-21
2019-28-2554
The Diesel Particulate NOx Reduction (DPNR) system is used for simultaneous reduction of PM and NOx in diesel engine. DPF is used to trap particulate matter in diesel engines. NOx absorber technology removes NOx in a lean (i.e. oxygen rich) exhaust environment for both diesel and gasoline lean-burn GDI engines. The NOx storage and reduction catalyst is uniformly coated on the wall surface and in the fine pores of a highly porous filter substrate. Combination of these two components in the DPNR results in a compact size of the system. The base diesel engine model validated with pressure crank angle diagram and performance parameters such as Indicated mean effective pressure. This base engine’s exhaust emission is given as an input to the DPNR system. The surface reaction is connected to the DPF through chemcon template. The surface reaction is NOx storage and reduction chemical kinetics like Lean NOx Trap. The modelling of DPNR and Base engine is done using GT-SUITE.
Technical Paper

Biodiesel from Microalgae

2017-01-10
2017-26-0077
Microalgae as feedstock are the potential third generation biofuels. Microalgae are photosynthetic microorganism which requires light, carbon-di-oxide, nitrogen, phosphorous, and potassium for growth and to produce lipids, proteins and carbohydrates in large amounts over short a periods of time. The production of biofuels from microalgal is a viable alternative due to their easy adaptability to growth conditions, possibility of growing biomass either in fresh or marine waters. Hence the current project was designed to elucidate the biodiesel producing ability of blue-green algae such as Spirulina platensis and Green algae Chlorella vulgaris. The selected algae were cultivated in suitable growth media such as modified Zarrouke medium and bold basal medium, respectively. The Spirulina platensis and Chlorella vulgaris were mass cultured for 8 days then harvested using 50 micron nylon filters and dried in sunlight to obtain dry biomass.
Technical Paper

Assessment on Performance, Combustion and Emission Characteristics of Diesel Engine Fuelled with Blends of Diesel, Algae Biodiesel and Heptanol

2019-01-09
2019-26-0091
Because of higher NOx and PM emissions Compression Ignition (CI) engines are slowly being replaced by gas engines in metro cities though CI engine have better thermal efficiency and emit less Carbon monoxide (CO) and Unburned Hydrocarbons (UHC) emission than SI engines. Pollutants formed during combustion, depleting fossil fuels and continuous raising fuel price pushes the research community to find new alternative fuels which can be used along with diesel or replace the diesel without making major modifications in the current engine. The objective of this research work is to derive bio-diesel fuel from the source of algae and use it as a fuel by blending with commercially available diesel fuel. Heptanol is added along with algae bio-diesel and diesel blend to improve the ignition quality of the blend. Tests were conducted on a single cylinder constant speed, water cooled stationary diesel engine with different blends proportions of heptanol-biodiesel-diesel.
X