Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Significant Updates for the Current Icing Product (CIP) and Forecast Icing Product (FIP) Following the 2019 In-Cloud ICing and Large-drop Experiment (ICICLE)

2023-06-15
2023-01-1487
The Current Icing Product (CIP; Bernstein et al. 2005) and Forecast Icing Product (FIP; Wolff et al. 2009) were originally developed by the United States’ National Center for Atmospheric Research (NCAR) under sponsorship of the Federal Aviation Administration (FAA) in the mid 2000’s and provide operational icing guidance to users through the NOAA Aviation Weather Center (AWC). The current operational version of FIP uses the Rapid Refresh (RAP; Benjamin et al. 2016) numerical weather prediction (NWP) model to provide hourly forecasts of Icing Probability, Icing Severity, and Supercooled Large Drop (SLD) Potential. Forecasts are provided out to 18 hours over the Contiguous United States (CONUS) at 15 flight levels between 1,000 ft and FL290, inclusive, and at a 13-km horizontal resolution.
Technical Paper

Initial Results from Radiometer and Polarimetric Radar-based Icing Algorithms Compared to In-situ Data

2015-06-15
2015-01-2153
In early 2015, a field campaign was conducted at the NASA Glenn Research Center in Cleveland, Ohio, USA. The purpose of the campaign is to test several prototype algorithms meant to detect the location and severity of in-flight icing (or icing aloft, as opposed to ground icing) within the terminal airspace. Terminal airspace for this project is currently defined as within 25 kilometers horizontal distance of the terminal, which in this instance is Hopkins International Airport in Cleveland. Two new and improved algorithms that utilize ground-based remote sensing instrumentation have been developed and were operated during the field campaign. The first is the ‘NASA Icing Remote Sensing System’, or NIRSS. The second algorithm is the ‘Radar Icing Algorithm’, or RadIA.
X