Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Design of a Dynamic Rollover Test System

2011-04-12
2011-01-1116
A dynamic rollover test system (DRoTS) capable of simulating rollover crashes in a laboratory was designed for research use at the University of Virginia. The goal of the current study is to describe the system's capabilities and specifications as well as to explore the limitations of the system's ability to simulate rollover crashes. The test apparatus was designed to permit simulation of a single roof-to-ground interaction of a rollover crash with the potential to be modified for evaluation of pre-roof contact occupant motion. Special considerations were made to permit testing of both dummies and post-mortem human surrogates in both production vehicles and a parametric test buck. DRoTS permits vertical translation, pitch, and roll of the test vehicle while constraining longitudinal and lateral translations and yaw. The study details the ranges of test parameters capable with the DRoTS and evaluates the limitations of the system relative to rollover crash conditions.
Journal Article

Development of a Biofidelic Rollover Dummy-Part II: Validation of the Kinematic Response of THOR Multi-Body and Finite Element Models Relative to Response of the Physical THOR Dummy under Laboratory Rollover Conditions

2016-04-05
2016-01-1486
While over 30% of US occupant fatalities occur in rollover crashes, no dummy has been developed for such a condition. Currently, an efficient, cost-effective methodology is being implemented to develop a biofidelic rollover dummy. Instead of designing a rollover dummy from scratch, this methodology identifies a baseline dummy and modifies it to improve its response in a rollover crash. Using computational models of the baseline dummy, including both multibody (MB) and finite element (FE) models, the dummy’s structure is continually modified until its response is aligned (using BioRank/CORA metric) with biofidelity targets. A previous study (Part I) identified the THOR dummy as a suitable baseline dummy by comparing the kinematic responses of six existing dummies with PMHS response corridors through laboratory rollover testing.
X