Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Parallel Hybrid Drive System for Small Vehicles: Architecture and Control Systems

2016-04-05
2016-01-1170
The TC48 project is developing a state-of-the-art, exceptionally low cost, 48V Plug-in hybrid electric (PHEV) demonstration drivetrain suitable for electrically powered urban driving, hybrid operation, and internal combustion engine powered high speed motoring. This paper explains the motivation for the project, and presents the layout options considered and the rationale by which these were reduced. The vehicle simulation model used to evaluate the layout options is described and discussed. The modelling work was used in order to support and justify the design choices made. The design of the vehicle's control systems is discussed, presenting simulation results. The physical embodiment of the design is not reported in this paper. The paper describes analysis of small vehicles in the marketplace, including aspects of range and cost, leading to the justification for the specification of the TC48 system.
Technical Paper

Quantifying the Information Value of Sensors in Highly Non-Linear Dynamic Automotive Systems

2022-03-29
2022-01-0626
In modern powertrains systems, sensors are critical elements for advanced control. The identification of sensing requirements for such highly nonlinear systems is technically challenging. To support the sensor selection process, this paper proposes a methodology to quantify the information gained from sensors used to control nonlinear dynamic systems using a dynamic probabilistic framework. This builds on previous work to design a Bayesian observer to deal with nonlinear systems. This was applied to a bimodal model of the SCR aftertreatment system. Despite correctly observing the bimodal distribution of the internal Ammonia-NOx Ratio (ANR) state, it could not distinguish which state is the true state. This causes issues for a control engineer who is less interested in how precise a measurement is and more interested in the location within control parameter space. Information regarding the dynamics of the systems is required to resolve the bimodality.
Technical Paper

An Assessment of a Sensor Network Using Bayesian Analysis Demonstrated on an Inlet Manifold

2019-04-02
2019-01-0121
Modern control strategies for internal combustion engines use increasingly complex networks of sensors and actuators to measure different physical parameters. Often indirect measurements and estimation of variables, based off sensor data, are used in the closed loop control of the engine and its subsystems. Thus, sensor fusion techniques and virtual instrumentation have become more significant to the control strategy. With the large volumes of data produced by the increasing number of sensors, the analysis of sensor networks has become more important. Understanding the value of the information they contain and how well it is extracted through uncertainty quantification will also become essential to the development of control architecture. This paper proposes a methodology to quantify how valuable a sensor is relative to the architecture. By modelling the sensor network as a Bayesian network, Bayesian analysis and control metrics were used to assess the value of the sensor.
Technical Paper

Optimal Control Inputs for Fuel Economy and Emissions of a Series Hybrid Electric Vehicle

2015-04-14
2015-01-1221
Hybrid electric vehicles offer significant fuel economy benefits, because battery and fuel can be used as complementing energy sources. This paper presents the use of dynamic programming to find the optimal blend of power sources, leading to the lowest fuel consumption and the lowest level of harmful emissions. It is found that the optimal engine behavior differs substantially to an on-line adaptive control system previously designed for the Lotus Evora 414E. When analyzing the trade-off between emission and fuel consumption, CO and HC emissions show a traditional Pareto curve, whereas NOx emissions show a near linear relationship with a high penalty. These global optimization results are not directly applicable for online control, but they can guide the design of a more efficient hybrid control system.
X