Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Measurement of Transient PM Emissions in Diesel Engine

2011-09-11
2011-24-0197
Transient emission peaks have become an important fraction of the total emissions during the standardized test cycles for passenger car Diesel engines. To this end this paper is concerned with the challenge of measuring emissions during transients. The importance of this topic is increasing due to strict regulation on pollutant emissions. Hence, suitably accurate and fast measurement devices for PM emission detection are required. Thus, we present a comparison between different measurement techniques for Particulate matter (PM) emissions from a Diesel engine, in particular during transients. The compared equipments include AVL Micro soot sensor, AVL Opacimeter, Differential mobility spectrometer and Laser induced incandescence. The goal of this paper is to reveal the most accurate device in the sense of sensitivity and dynamics for fast measurements of PM from a Diesel engine.
Technical Paper

Development of In-Situ, Full Stream, Laser Induced Incandescence Technique for Measurement of Transient Soot Emissions

2013-09-08
2013-24-0169
The Laser Induced Incandescence technique (LII) is a sensitive optical method for reliable spatially and temporally resolved measurement of particulate matter (PM) concentration. This technique appears to be suitable for measurement of fast transient PM emissions, from diesel engines, which forms the main fraction of total emissions during standardized test cycles. However, the existing commercial LII devices require modifications in the exhaust gas flow, dilution, sampling cell, or it measure only in a partial stream. This article presents the development of a laser based optical setup - LII for rapid in-situ measurement of PM concentrations during the combustion process of a diesel production engine. The presented LII setup is suitable for direct in-situ, full stream, measurements of soot emissions without needs of dilution or a sampling cell.
X